Probabilistic Pathways for Energy System Planning WP3 - Process enhancement identification and definition

May 2024

Overview

One of National Grid ESO's key responsibilities is planning the GB's future grid infrastructure to assure security, sustainability, and affordability of supply. As the energy transition accelerates, complexity and uncertainty associated with long-term planning and decision-making grows'

Discovery Project Objective:

Identify, assess, and prioritise opportunities for advanced computational process enhancements within the existing and future network planning processes.

Workshop Objectives

1. CHALLENGES Verify challenge statements obtained during business process modelling workshops.

Sensitive information Redacted 2. TECHNIQUES Provide an update on the modelling techniques that have been explored. 3. Optioneering Downselect the most appropriate innovation idea for progression to Alpha Phase.

TECHNIQUES

Provide an update on the modelling techniques that have been explored.

; ESO

6 ESO

OPTIONEERING

Downselect the most appropriate innovation idea for progression to Alpha Phase.

Multicriteria Decision Analysis

Opportunities

identified during

WP2

Process

Challenge

Challenge 1

Challenge 2

Challenge 3

...

Opportunity N

MCDA used to rank the different innovation ideas based on their suitability for SIF Alpha Phase

Map techniques to appropriate challenge

Commercial in Confidence

Multicriteria Decision Analysis

UID	Process Ref	Challenge	Proposed Technique	Innovation Description	Enhanceme nt (10)	Difficulty (5)	Score (15)
CH1	Supply & Demand	Changing landscape	Probabilistic with surrogate model	Markov Chain Monte Carlo (MCMC) for generating demand profiles with a spatio-temporal Graph Convolutional Neural	8	5	13
CH2	Supply & Demand	Increasing scenarios		Network to predict dispatch outcomes in less time			
CH3	Supply & Demand	Optimisation	Reinforcement Learning	Reinforcement learning agent to learn recommended optimal policies	8	4	10
CH4	Supply & Demand	Input bias and uncertainty	Probabilistic sensitivity analysis	Sobol variance-based sensitivity analysis to highlight the contribution of inputs to uncertainty	8	2	10
CH5	Supply & Demand	Data acquisition	Generative AI	Model to generate synthetic data where data is late/missing	2	4	6
CH6	Supply & Demand	Data preparation	Natural Language Processing	Named Entity Recognition to semi- automate the data processing, pre- analysis	6	3	9

Multicriteria Decision Analysis

UID	Process Ref	Challenge	Proposed Technique	Innovation Description	Enhanceme nt (10)	Difficulty (5)	Score (15)
CH7	Supply & Demand	Deterministic analysis	Probabilistic model	MCMC for generating demand profiles [see CH1] or Bayesian Network	8	3	11
CH8	Demand	Model transparency	Reduced order model	Reduce dimensions to present the greatest contributory factors with bespoke visualisation	6	3	9
CH9	Demand	DER capacity	Surrogate model	Train model, such as hierarchical kriging, with DNO models to quickly determine likely DER generation	6	4	10
CH10	Supply	Plexos time constraints	Surrogate model	GCNN predicts what PLEXOS dispatch will suggest for a given demand / capacity and run much faster than a full dispatch optimisation	8	4	12
CH11	ETYS	Deterministic ETYS inputs	Probabilistic model	Link to MCMC approach but would need alignment with Pouya development	4	3	7
CH12	ETYS	PowerFactory time constraints	Surrogate model	Trained on PowerFactory for quick approximate runs	4	4	8
CH13	NOA	Deterministic CBA	Probabilistic model	Bayesian network cost benefit analysis Commercial in Confidence	4	3	7 15 E

SIF Scope Recommendation

ALPHA

- Generate MCMC framework for a single module, as proof of concept.
- Prototype GCNN for a small region of network, trained on Plexos data.
- Develop requirements for Reinforcement Learning agent.

BETA

- Develop MCMC capability for demand and supply capacity.
- Generate whole energy system GCNN.
- Integrate Reinforcement Learning optimiser for SSEP decision making enhancement.

Optioneering

- Confirm approval of proposed Alpha Phase project and define scope during the workshop on 17th May.
- > Frazer-Nash to provide first draft by of submission by 7th June.
- > ESO to submit final version by 19th June.