

Virtual Energy System

Powered by ESO

These slides are a snapshot of the work to date on the Virtual Energy System underpinning framework. The intent is to share the evolving knowledge and learnings with industry. For more information on the latest developments please contact <u>VirtualES@nationalgrideso.com</u>

VIRTUAL ENERGY SYSTEM SHOW & TELL

MARCH 2023

Simon Evans Global Digital Energy Leader, Arup

Note to reader:

AGENDA – THE NEXT 45 MINUTES

Introductions

2 mins: Dial-in buffer, introductions, context and objective of Show & Tells

The Virtual Energy System (VirtualES)

10 mins: VirtualES, journey to date, and socio-technical factors

Demonstrator use case
5 mins: Use Case Definition (what)

5 mins: Data needs & Gaps

Demonstrator technology

5 mins: Introduction and options assessed5 mins: Overview of the high level design and recommendations

- Next steps
- Questions & Answers

INTRODUCTIONS

Show & Tell objective

Share knowledge and learnings from the work to date with industry

VIRTUAL ENERGY SYSTEM

WHAT IT IS, IT'S OBJECTIVES, AND THE SCOPE

Jonathan Barcroft Workstream Lead – National Grid ESO

THE CHANGING ENERGY SYSTEM

Our mission is to decarbonise the energy system and bridge the gap to net zero.

Increased data availability and digitalisation of systems is fundamental to enable markets and technology to manage peaks and troughs.

2. POPULATED BY CONNECTING EXISTING AND NEW DIGITAL TWINS 1. IT BEGINS WITH A COMMON SOCIAL-TECHNICAL FRAMEWORK

3. EACH CONNECTED DIGITAL TWIN CAN SECURELY CONTRIBUTE TO THE SYSTEM

4. FACILITATES SYSTEM WIDE ACTIONABLE INSIGHT

OUR APPROACH

Use Case

Demonstrator

Wireframe to show benefits of VirtualES for a specific use case.

Social-Technical

Factors

Deep dive into 6 of 14 factors to inform the wider sector

A SOCIAL-TECHNICAL FRAMEWORK

People	Defining roles & responsibilities Formalise R&R for the VirtualES with the intentions of consumer benefits	Raising awareness & fostering culture Share vision, belief & behaviours. Enabling practices to support VirtualES objectives	Building capabilities & skills Understand skills & competency needs & develop capacity building strategies	PRIORITY FACTOR
Process	Aligning around industry codes & standards Identify standardised practices in industry & align around them	Engaging Stakeholders Nurture industrial, governmental and political support	Creating a governance framework Set strategy and operational governance of the VirtualES	Determining operating environment Business models, cross organisational legal, policy, & contractual framework
Data	Aligning models & taxonomies Harmonise existing data standards, taxonomies and ontologies.	Establishing management & governance Data management & governance requirements	Increasing visibility & enabling sharing Nurture effective data sharing to support interoperability	Managing security Set the core rules needed to address security, privacy and risk implications surrounding VirtualES data
Technology	Connecting physical infrastructure Physical infrastructure, devices and their connectivity required to operate the VirtualES	Enhancing modelling and analysis Modelling / simulation & analysis software used for current & future modelling	Creating interoperable tech-stack Communication, cooperation & sharing across VirtualES & other in/cross sector projects	

DEMONSTRATOR USE CASE

DATA NEEDS & GAPS

Ed Rous Eyre Senior Digital Consultant, Arup

DEMONSTRATOR USE CASE

Exploring the opportunity to re-route electricity between grid supply points (GSPs).

Example GSP configuration (GSPs can be owned by the TNO or the DNO)

FUTURE OPERATING STATE – DATA FLOWS

Engaged stakeholders from across the sector to understand the future operating state and how the use case could be enabled.

USE CASE DIAGRAM

Helping to describe the data and the key activities that would deliver the use case.

Base model publishing

DATA PRODUCTS

Three data products identified that are critical to the implementation of the demonstrator. These are **Networks, Assets & Operational Scenarios**

ESO Key factors Aligning models & taxonomies

Virtual Energy System

GAP ANALYSIS – EXISTING DATA LANDSCAPE

Data exchanges

Data portals

Data standards

SOCIAL-TECHNICAL RECOMMENDATIONS

fostering culture

framework

People	Process	Data	Technology
Continued engagement across the industry to promote VirtualES	Map the key user and data interactions and document process flows	Greater alignment to a data standard	Engage with power flow modelling vendors to understand their roadmaps
	Certification process to validate network data quality	Determine the appropriateness of CIM	Test technology platforms to facilitate data sharing between parties.
	Process to develop globally unique node IDs and to merge networks	Assess interoperability and data loss challenges converting from	
	Consistent approach for implementing boundary conditions for reduced network modelling.	CIM.	
ESO Key factors awareness &	Creating a governance		Virtual Energy System 📥

USE CASE

TECHNOLOGY ARCHITECTURE

Andy Kervell Associate, Arup

John Bintu Solutions Architect, Arup

INTRODUCTION

Overview

The success of the Virtual Energy System depends on the implementation of a suitable data sharing architecture.

Key considerations

- Data sharing
- Security
- Technology
- Architecture

DATA SHARING OPTIONS

Data sharing options assessed

- 1. Point-to-point sharing
- 2. Centralised datastore
- 3. Data portal
- 4. Distributed storage system
- 5. Distributed streaming platform
- 6. Data virtualisation

HIGH LEVEL DESIGN FOR THE DEMONSTRATOR

ESO

ARUP POTENTIAL HIGH LEVEL DESIGN FOR FUTURE VIRTUALES

Virtual Energy System

RECOMMENDATIONS

Key recommendations

- 1. Fully distributed architecture
- 2. Demonstrator use-case to set the foundation for future iterations

NEXT STEP

Beatrice Nassi Senior Business Analyst, Arup

NEXT STEPS

Demonstrator

Field test elements of the VirtualES

Gas Use Case

Evaluate a gas sector specific use case in relation to VirtualES

Social Technical Factors

Define how social technical factors should be delivered to supports the VirtualES implementation and sector wide adoption

Cost Benefits Analysis

Evidence the value which could be enabled by the Demonstrator and the Common Framework

ARUP

QUESTIONS FOR THE AUDIENCE

Simon Evans Global Digital Energy Leader, Arup

QUESTIONS ASKED VIA SLIDEO

- 1. What are your thoughts on the demonstrator we just explained?
- 2. What are you thoughts on the high level design for the future VirtualES?
- 3. What are the core features you'd expect to see in the VirtualES?

Virtual Energy System

Powered by ESO

Q&A

Simon Evans Global Digital Energy Leader, Arup

