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1. Executive summary 

This report presents findings from a literature review of the main drivers of electricity demand and 
current electricity demand forecasting methodologies. 

Key conclusions drawn from the literature are summarised below. Further analysis of historical data is 
required to ascertain the full validity of these conclusions. 

The main drivers of changes to historical electricity demand are: 

▪ Weather has been found to correlate with electricity demand, with specific considerations such 
as temperature, hot and cold days and extreme weather events linked with peak demand 
periods 

▪ Socioeconomic factors (e.g. population demographics, income and industrial activity) are 
believed to be key drivers of long-term, multi-year total electricity demand trends, even more 
so than typical weather variations which were found to have a greater impact on monthly or 
annual demand profiles  

▪ Social behaviour has also been found to influence electricity demand patterns over time, with 
evolving human habits (e.g. working patterns) and the adoption of various new technologies 
(e.g. electronic media) significantly changing the need for and timing of electricity demand, 
including peak electricity demand of residential consumers 

 

Based on this review of historical trends, it is expected that future demand drivers will affect electricity 
demand in Great Britain as follows: 

▪ Socioeconomic factors will continue to drive future electricity demand in the long term – the 
correlations between these drivers and demand are expected to evolve over time, requiring 
further study to form a more accurate view on future trends 

▪ The adoption of new technologies such as smart heat pumps, smart electric vehicles (EVs), 
hydrogen electrolysers, and demand-side management are expected to increase the time-
shifting of demand away from demand peaks, whilst contributing to an overall increase in 
demand due to fuel switching, therefore potentially affecting the annual average to peak 
demand ratio 

▪ Many studies point to the increasing impact of climate change on electricity demand – extreme 
temperatures in the warm and cold months are expected to increase demand for heating and 
cooling, while more frequent extreme weather events may also significantly affect electricity 
demand (greater transmission & distribution system losses are also expected as they become 
less efficient at high temperatures) 

▪ Increases in embedded generation are also expected to impact transmission peaks while 
overall energy efficiency improvements are expected to have a minimising effect on demand, 
the magnitude of which needs to be studied in further detail 

 

Key conclusions from reviewing literature relating to long-term peak demand modelling methodology 
were also drawn from the reviewed literature along with NGESO’s long-term demand modelling 
methodology: 

▪ Bottom-up modelling, as is NGESO’s current model, is well-suited for future trends forecasting 
where historical data is not available – a hybrid approach can be considered as more data on 
emerging electricity demand drivers (e.g. EV uptake and demand-side management 
programmes) becomes available 
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▪ For situations with historical data, multiple linear regression analysis has been found to be well 
suited to long-term, multi-year peak and annual demand forecasting, with potential for 
considering additional methods such as autoregression and artificial neural networks if more 
detailed forecasting methodologies are desired 

▪ Limitations to the ACS and 1-in-20 methodologies are raised, with further analysis needed to 
quantify these limitations on forecasting demand moving forward, given expected changes in 
weather patterns, social behaviours and technology and the impact this will have on future 
peak electricity demand 

▪ Current NGESO methodology and assumptions to model the relationship between demand 
drivers and demand are questioned 

o Changing demand profiles with the adoption of new technologies and smart 
technologies due to the demand/time-shifting ability of these technologies, operation 
constraints and changing consumer behaviours need to be incorporated into the 
methodology 

o The current assumption of peak demand timing – in the winter months at 5-6pm, which 
increasingly needs to be considered alongside summer peak demand which is expected 
to grow in future years from a combination of increased air-conditioning uptake and 
increased occurrences of heat waves 

▪ The expected magnitude of change of future demand trends based on the key drivers identified 
is required to determine how the existing NGESO methodology can be improved upon. This 
could be explored further in Work Package 2 : 

o Annual peak demand is made up of a combination of consumer behaviour & 
synchronisation, weather factors, socio-economic factors and policy 

o Over the 5-, 10- and 30-year horizon, the factors driving changes in peak demand are 
likely to include behavioural change, technological advancement and uptake, fuel 
switching in heat and transport, policy and embedded generation buildout 

o Peak demand is expected to be a combination of individual consumption components 
that align with the predominant synchronous factors 

2. Introduction 

As a central player in the GB electricity system, it is the role of National Grid ESO (NGESO) to provide 
the leadership and guidance for the transition to Net Zero. The regular dissemination of insights and 
analysis enables NGESO to facilitate a smooth transition to Net Zero by assisting stakeholders to make 
informed decisions on energy-related matters. 

To this end, NGESO has embarked on a project to assess how electricity demand, in particular peak 
demand, can be forecasted over a long-term 5-, 10- and 30-year time horizon, considering the impact 
of uncertainties in population growth, weather events, energy efficiencies, economic conditions and 
calendar effects. 

 

Overview of report sections 

This report is the result of a literature review of historical demand drivers, future demand drivers and 
electricity demand forecasting methodologies: 

▪ Section 3 covers the main findings of a review of historical and future demand drivers in the 
literature 
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▪ Section 4 covers the main findings of a review of various forecasting methodologies outlined in 
the literature 

▪ Section 5 provides a review of key steps in the NGESO peak demand forecasting methodology 

▪ Section 6 summarises areas for further study in order to improve further on the current 
NGESO peak demand forecasting methodology 

 

Overview of peak electricity demand 

Peak electricity demand (or peak demand) usually refers to the highest electricity demand on an 

electrical grid over a given time period. 

In the operations and planning of electricity systems, peak and annual load forecasting can be 

conducted on different time horizons, depending on the intended goals. In the literature: Short-term 

demand forecasting typically focuses on a time horizon of several hours to less than a week (Dai, 

Meng, Dai, Wang, & Chen, 2021). Medium-term demand forecasting is typically weeks or months 

ahead. Long-term demand forecasting is associated with a time horizon of more than a year, up to 

several decades; this is also the time horizon that NGESO looks at for the modelling of peak demand in 

their Future Energy Scenarios (FES). Long-term forecasting plays an important role in informing 

generation, transmission, and distribution system planning (Jang, Byon, Jahani, & Cetin, 2020). In this 

report, the terms ‘long-term’ or ‘long-term, multi-year’ are used to refer to the time horizon relevant 

to NGESO’s long-term forecasting.  

Peak electricity demand is usually modelled from electricity demand profiles. Specifically, annual peak 

demand would be modelled from an annual electricity demand profile or average annual demand 

value. As such, the literature reviewed looks at drivers and methodologies that relate to the modelling 

of, both, peak demand and also overall electricity demand by end consumers.  

3. Key peak demand drivers 

3.1 Overview of demand drivers 

It is commonly agreed upon across literature sources that electricity demand is driven by a combination 
of weather, socioeconomic factors, consumer behaviour, technology (uptake and improvements) and 
other factors such as policy and price. 

Climate change, technological innovation, as well as electrification of energy services to meet carbon 
targets, have a significant impact on electricity demand magnitude and patterns (Cassarino, Sharp, & 
Barrett, 2018). Additionally, long-term electricity demand forecasts have been found to be affected 
more by changing socioeconomic factors than weather (Ghods & Kalantar, 2010). 

Literature points out that the new digital and smart grid era calls for more attention to build flexible 
peak load forecasting frameworks to adapt to the rapid development of the power system. Effective 
peak load management would result in an estimated reduction in peak demand of 5-15%, which would 
bring substantial resource savings and decreasing real-time electricity tariffs (Dai, Meng, Dai, Wang, & 
Chen, 2021). 

Overall, all drivers listed in Table 1 below are expected to correlate with peak demand and annual 
electricity demand, though certain factors such as hot and cold days may have a stronger correlation 
with peak demand. 
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 Key demand 
drivers* 

Description Link with annual and peak demand 

W
e

a
th

e
r 

Temperature 
(h/f) 

▪ Climate change causes a rise in temperatures 
and an increase in temperature volatility 

▪ Historically, temperature found to correlate 
well with electricity demand 

▪ Slight decrease in peak demand in the 
medium to long term, but greater risk of 
extreme weather years 

Extreme 
weather 
events (f) 

▪ Random weather events that result in 
extremely warm or extremely cold days 

▪ Unpredictable in nature, but likely to 
significantly influence peak demand in 
the year of occurrence 

Hot and cold 
days (h/f) 

▪ Applies more for regions with extremes in the 
warmer months (e.g. tropical countries, 
southern Europe, southern US states) 

▪ Potential to become a more significant 
driver in GB peak demand with 
increasing temperatures due to climate 
change  

  Other weather 
variables (h/f) 

▪ Additional weather variables, such as 
humidity, solar radiation, wind-speed 

▪ Not believed to significantly affect peak 
demand 

S
o

ci
o

e
co

n
o

m
ic

 f
a

ct
o

rs
 

GDP (h) 

▪ For GB, correlation found to hold until 2006, 
beyond which there appears to be little/no 
correlation 

▪ Potentially not an important 
consideration for future GB peak 
demand 

Income (h/f) 

▪ Higher income found to correlate with higher 
electricity consumption 

▪ Correlates closely with GDP 

▪ Given the lack of correlation between 
GDP and peak demand in GB, this may 
potentially not be an important driver 

Population 
(h/f) 

▪ Commonly used in predicting residential 
electricity demand 

▪ Moderate population growth for GB 
(~7% growth up to 2041) – expect 
moderate impact on peak demand 

Social 
behaviours 
(h/f) 

▪ Changes in consumer due to changing cultural 
norms e.g. working hours, eating habits, media 
usage, etc. 

▪ An increased uptake of air-conditioning 
may increase summer peak demand 

  Electrification 
of heat (f) 

▪ In line with decarbonisation ambitions, more 
GB consumers are expected to switch from 
gas to electric heating 

▪ Given the correlation between 
temperature and electricity demand, 
this is expected to be a significant driver 
of peak demand in the future 

  Electric 
vehicles (f) 

▪ In line with decarbonisation ambitions and 
policy, an increase in EV ownership is 
expected 

▪ Expected to increase demand overall, 
but may provide time-shifting benefits if 
EVs are smart 

T
e

ch
n

o
lo

g
y

 

Smart 
technologies 
(including 
demand-side 
management) 
(f) 

▪ Adoption of smart technologies such as smart 
EVs, smart heat pumps and other demand-side 
management programmes that enable time-
shifting of demand 

▪ Expected to reduce peak demand  

▪ The extreme adoption of heat pumps 
may increase peak demand 

▪ Extreme adoption of heat pumps may 
increase air-conditioning and increase 
demand in warm months  

 Smart 
metering (f) 

▪ The use of smart meters to measure electricity 
consumption in households, and commercial 
and industrial sites 

▪ Potential to use purely qualitative 
statistical/artificial intelligence 
methods to forecast demand 

▪ Indicator of future ability to operate 
appliances smartly 

  Energy 
efficiency (h/f) 

▪ Increasing energy efficiency minimises end use 
electricity demand 

▪ Expected to have a minimising effect on 
peak demand 

  

Electrolysed 
hydrogen 
production (f) 

▪ Electrolysers will require electricity in order to 
produce hydrogen 

▪ Depending on operating model, may 
increase annual demand and peak 
demand or just annual demand 
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O
th

e
r 

Shifting input 
prices (h/f) 

▪ Prices affect consumer behaviour for 
electricity consumption – mostly for 
residential demand 

▪ Unlikely to affect peak demand in the 
long term 

Embedded 
generation (f) 

▪ Behind-the-metre generation such as rooftop 
solar (residential use) or co-located 
renewables (industrial use) 

▪ Expected to reduce system demand, 
therefore potentially reducing system 
peak demand 

 

Policy (h/f)  

▪ Government policy may influence a 
combination of drivers mentioned above and 
affect consumer behaviour 

▪ Not widely covered in literature, but 
important to consider where possible 
moving forward e.g. with regards to EV 
adoption rates, electrification of heat, 
half-hourly retail pricing etc.  

 

*h = historical demand driver; f = future demand driver; h/f = historical and future demand driver 

Source: Aurora Energy Resources 

Table 1: Summary of key demand drivers 

 

3.2 Historical demand drivers: Literature review 

3.2.1 Weather conditions 
Many existing studies focus on the relationship between weather conditions and electricity demand 

(Chesser, O'Reilly, Lyons, & Carroll, 2021; Thornton, Hoskins, & Scaife, 2016; Ruijven, Cian, & Wing, 

2019). This is because some end-use demands are strongly affected by weather conditions: space 

heating requirements increase as ambient temperature decreases, and the opposite trend is seen for 

air conditioning; hot water demand increases when water supply temperature decreases; artificial 

lighting requirements increase when sunlight decreases. A deep understanding of how weather 

conditions impact electricity consumption will make it possible to project how residential demands 

may change as electricity provides a greater fraction of heating, or how climate changes could 

increase the use of air conditioning. (Cassarino, Sharp, & Barrett, 2018) 

Temperature  

Temperature is the dominant weather driver of electricity demand in many developed countries, 

where lower temperatures result in demand for space heating whilst higher temperatures create 

demand for air conditioning (Thornton, Hoskins, & Scaife, 2016).  

Thornton et al. (2016) finds that daily electricity demand is strongly anti-correlated with daily mean 

temperature, on the condition that non-temperature related variability in demand (such as socio-

economic variability) has been removed. Temperature sensitivity in winter is similar or higher than 

that seen in spring and autumn; it is at a minimum in summer.  

Cassarino et al. (2018) analyses the demand temperature sensitivity of each European country at an 

hourly resolution, with the aim of estimating the specific heat loss coefficients for electric space 

heating and air conditioning. It is observed that in colder climates such as in Sweden, energy usage in 

the residential and commercial sector is impacted in the short-term primarily by the outdoor 

temperature, as a large proportion is used for heating. The study also finds that “The relationship 

between temperature and demand, however, has a different trend for each European state, with southern 

countries showing a parabola-like curve and northern ones generally displaying a monotonic inversely 

proportional trend” potentially due to the usage of cooling technologies during the warmer 

temperatures in Southern European countries. 
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Source: Cassarino et al. (2018) 

Figure 1: Temperature and daily national average electricity demand for 2011-2015 in the United 
Kingdom (left) and Italy (right) 

 

Hot & cold days 

Some studies use heating and cooling degree days to indicate weather conditions and long-term 

climate change. For example, a heating degree day (HDD) is a measurement designed to quantify the 

energy demand needed to heat a building. It is the number of degrees that a day's average 

temperature is below 18 °C, which is the “comfort threshold”, the temperature below which buildings 

need to be heated. This approach has been criticised, as the temperature threshold is arbitrary; the 

18°C threshold is also believed to be suitable to temperate regions, but not to tropical countries.  

Ruijven et al. (2019) use cold and hot days as an alternative indicator to heating and cooling degree 

days. “The cutoff values for defining hot and cold days are based on the distribution of daily average 

temperature across all world regions in temperate and tropical countries and meet the need to capture low 

and high extremes while guaranteeing a sufficient number of observations.” They then determine the 

climatic shocks by combining temperature elasticities with the change in the number of hot and cold 

days between 2019 and 2050 from 21 Earth System Models and two emission scenarios. Some 

research thinks that the longer-scale temperature variability, presumed to be predominantly 

associated with anthropogenic climate change, makes the likelihood of cold winter days lower today 

(Thornton, Hoskins, & Scaife, 2016). 

Extreme weather events 

Temperate climates experience mild to warm summers and cool to cold winters with distinct seasonal 

changes. Studies show that countries with temperate climates such as the UK and Ireland there is 

demand for space heating and domestic hot water heating in the residential sector and little to no 

demand for space cooling (Chesser, O'Reilly, Lyons, & Carroll, 2021). 

Prolonged cold periods due to a blocking high-pressure system is generally paired with low wind 

speeds which will result in low wind energy generation and could have serious impacts on supply. 

Chesser et al. (2021) emphasise the importance of understanding extreme weather events in Ireland – 

Ireland rarely experiences extreme winters or major snowstorms; and because of their rarity, when 
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they do occur, they cause serious disruption. “Occasionally a significant snowfall occurs with blocking 

high pressure to the north of Ireland pushing the North Atlantic jet stream and associated storm 

systems south, bringing an easterly Polar Continental airflow. This type of pattern can follow a 

phenomenon called a ‘Sudden Stratospheric Warming (SSW)’” (Met Eireann, 2019).There have been 

25 SWWs between 1958 and 2013. 

Chesser et al. (2021) explore the impact of an extreme cold weather event on peak electricity demand 

of homes heated by air source heat pump (ASHPs), when compared to a typical winter day in a 

temperate climate. They estimate the after diversity maximum demand (ADMD) during a period of 

extreme weather, comparing it to a typical winter day in the UK, and find that there was a 65% 

increase in peak average electricity demand from 3.839 kW on the day of the extreme cold weather 

event compared to 2.331 kW on a typical winter day.  

Other weather variables 

Inclusion of additional weather variables, such as humidity, solar radiation, wind-speed and other 

derived variables, has been shown to only modestly improve demand predictability (Thornton, 

Hoskins, & Scaife, 2016). Jang et al. (2020) points out that besides temperature, humidity also has 

some impacts on electric demand, as latent loads are also addressed by heating and cooling systems in 

buildings. However they believe that for modelling the long-term peak density, temperature is a 

sufficient factor (Jang, Byon, Jahani, & Cetin, 2020). 

Cassarino et al. (2018) analysed temperature, humidex, wind speed, and solar irradiation, weighted by 

population and aggregated nationally for each country in EU35, at hourly and daily resolution. Results 

show that humidex is linearly correlated with temperature at the European level, whereas wind speed 

and solar irradiation alone did not show a strong relationship with demand (Cassarino, Sharp, & 

Barrett, 2018). 

3.2.2 Socio-economic factors 
Along with weather conditions, electricity peak demand also largely depends on socio-economic 

factors, such as population and residential electricity demand patterns (Jang, Byon, Jahani, & Cetin, 

2020). Some studies define socio-economic factors as “low frequency variability”, the variability with a 

timescale of greater than about 5 years. Low frequency variability represents the combination of 

different socio-economic drivers such as consumer behaviour, income, gross domestic product (GDP), 

manufacturing, population and building characteristics on electricity demand. The study also points 

out that this variability should be removed prior to comparing demand with temperature; the time 

varying and complex combination of socio-economic drivers of demand suggests that using an 

individual driver (e.g. GDP) to model and then remove the long term demand trend is not appropriate 

(Thornton, Hoskins, & Scaife, 2016). 

GDP 

Due to the paucity of data and the methodological challenges, electricity demand forecasts are 

sometimes derived from a simple heuristic approach: for instance using GDP-based demand-growth 

forecasts as proxies for the growth in demand. “GDP, or other measures of economic output are often 

the strongest correlators of electricity demand” (World Bank Group, 2017). The suitability of such 

simplified forecasts differs for developing and developed countries. GDP forecasts are available for 

many developing countries and therefore are often used to forecast electricity demand in developing 

regions. However, economic transformation, characterised by intensifying production and greater 

access rates among other factors, makes electricity demand growth rates go beyond growth arising 

from output shifts alone. For example, low-income countries experienced high electricity demand 

growth but having relatively low growth in real GDP. (World Bank Group, 2017) It is concluded that 
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GDP growth is not always strongly correlated with electricity demand; when it is, multivariate 

econometric time-series models more accurately estimate the GDP-energy multiplier compared to a 

simple 1:1 ratio. 

It is worth noting that research finds that little correlation between GDP and electricity demand in the 

UK, from the year 2007 onwards. Prior to 2006, there was a strong positive correlation between GDP 

and electricity demand. The reduction in UK electricity demand since the mid-2000s is thought to be 

driven by the financial crisis, energy saving measures, an increase in embedded generation (demand 

that is not seen by the grid operator), and a move away from heavy industry. Energy saving measures, 

increased embedded generation and the shift from industrial to commercial demand would reduce the 

relationship between GDP and energy demand and could potentially explain the change in the GDP-

demand relationship after 2006. (Thornton, Hoskins, & Scaife, 2016) 

Population 

Jang et al. (2020) use population as one of the major factors for the daily peak demand modelling. They 

note that in developed countries, population is a representative demand driver among many possible 

drivers, and that population is often positively correlated with other economic conditions. Moreover, 

it is relatively easier to predict the population growth or decay than other factors at a local or regional 

level (Jang, Byon, Jahani, & Cetin, 2020). 

Income 

Income is sometimes viewed as the per-capita GDP, a function of population and GDP projections, and 

therefore it can be key socio-economic driver of electricity demand. For example, in order to capture 

the socio-economic effect on future electricity demand, Ruijven et al. (2019) combine income 

elasticities with population and GDP projections from the Shared Socioeconomic Pathways (SSPs). 

Social behaviours 

Literature points out that social behaviours are increasingly recognised as a fundamental driver in 

energy models for both daily demand profiles but also long-term, multi-year demand trends 

(Pfenninger, Hawkes, & Keirstead, 2014) (Anderson & Torriti, 2018). One of the key input data for 

engineering energy models is human activity, which can be estimated by different means, such as 

through time use surveys or by metering energy usage. Energy models focused on the residential 

sector can estimate social behaviours by also integrating the information on building occupancy (Flett 

& Kelly, 2017). Social behaviour information is essential to simulate future demand upon changes in 

the human behaviour due to the adoption of new technologies” (Cassarino, Sharp, & Barrett, 2018). 

Social behaviours can show recurring patterns in time, and are affected by the weather, cultural 

customs, technology and policies. Human activity has a particularly high impact over daily demand 

patterns, while weather conditions tend to have a stronger influence on the seasonal and annual scale.  

Daily social activities represent the shortest cycle of these recurring patterns, and therefore energy 

models often include daily patterns to predict energy service demands (McKenna & Thomson, 2016). 

Daily patterns are predominantly determined by human activities at home, at work and elsewhere for 

leisure, shopping etc. Weekends and holidays usually cause decreased activity in non-domestic 

sectors, such as schools and factories, as well as increased activity in dwellings or in non-domestic 

sectors serving holidaying people, such as hotels (Cassarino, Sharp, & Barrett, 2018). Historically 

weekends and holidays have on average 15%–20% less electricity demand than weekdays in the UK 

(Thornton, Hoskins, & Scaife, 2016).  

Research shows that there are important differences in the activity among years, seasons, and in 

particular, days of the week. These differences cannot be captured by calculating a single daily profile 

for an average day of the year, but only by determining profiles along a whole week to consider the 



PEAK ELECTRICITY DEMAND FORECASTING 

A comprehensive literature review of peak electricity demand forecasting methodologies 

 

 

11 

 

differences between each day type. In addition, it is recommendable to extract profiles for each 

season, or creating a single profile that combines spring and autumn, as the demand in these periods is 

less influenced by space heating and air conditioning than in winter and in summer. Lastly, using a 

different profile for each day of the week makes it possible to design detailed scenarios that consider 

changes in human behaviour between working days and weekends. Interestingly, “despite being 

consistently separated between working days and weekends until 2015, the activity profiles for the 

UK showed a different trend in 2016, with a much lower difference between the two day categories” 

(Cassarino, Sharp, & Barrett, 2018). 

“Time of use (ToU) for maximum electricity demand was found to be strongly influenced by occupant 

characteristics, HoH age and household composition. Younger head of households were more inclined 

to use electricity later in the evening than older occupants. The appliance that showed the greatest 

potential for shifting demand away from peak time use was the dishwasher (McLoughlin, Duffy, & 

Conlon, 2012).” The age structure of population might also influence peak electricity demand. Some 

research has shown that the presence of teenagers is one of the significant drivers of high electricity 

demand in UK homes (Jones & Lomas, 2015). In line with this, the ageing population in Great Britain 

may result in a reduction in long-term residential electricity consumption over time (and therefore 

lower electricity demand). 

However, careful study is needed to ascertain the impact of the introduction of Time of Use tariffs on 

consumer behaviour as Anderson and Torriti (2018) note that a Time of Use trial in Italy resulted in 

only minimal changes to peak demand.  

Several researchers warn against being too optimistic about the potential of time shifting households’ 

electricity consumption by turning our attention to the temporal-spatial interconnectedness of 

practices and how collective temporal considerations structure everyday practices even at the 

household level (Friis & Christensen, 2016). 

Policy 

Policy is widely accepted to be a driver of electricity demand, however is not covered in detail in the 

literature reviewed. Selected policy considerations are commented on in other parts of this section 

(e.g. Time of Use tariffs). For Great Britain, we expect key policy considerations that may influence 

peak demand to include the potential introduction of half-hourly retail pricing and the ban on new 

petrol and diesel vehicles from 2030. 

3.3 Additional future demand drivers: Literature review 
All demand drivers mentioned above are expected to continue driving future electricity demand in 

GB, except for GDP. Additional future demand drivers not currently widely in use in GB and therefore 

not significantly present historically, are outlined in this section. 

The expected timeline for the contribution of the various future demand drivers is summarised in the 

table below along with a view on their likelihood (high or low) of influencing demand in the given time 

horizon. Note: This is not an indication of the magnitude or direction of impact each of these drivers 

may have on peak demand. 

Future demand driver 
Likelihood of influencing peak demand 

5-year horizon 10-30 year horizon 

Input prices (fuel & other costs) High High 

EV adoption High High 
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Heat pump adoption High High 

Embedded generation High High 

Demand-side management programmes Low High 

Smart metering Low High 

Electrolysed hydrogen production Low High 

Source: Aurora Energy Resources 
 

Table 2: Summary of future demand drivers and their likelihood of influencing peak demand 

 

Over the next 5 years, additional demand drivers are expected to have an influence on peak demand 

(on top of that observed historically in the literature). In this time, the magnitude of influence of these 

additional drivers on peak demand is expected to be relatively small, but is expected to grow over the 

10-30-year horizon. 

The drivers expected to influence peak demand over the next 5 years include input prices (fuel and 

other electricity costs that affect electricity prices), EV adoption rates and heat pump adoption rates. 

Embedded generation capacity growth will influence peak demand on the transmission system but has 

no impact on overall end consumer demand. 

Over the next 10-30 years, this list grows to include demand-side management programmes, smart 

metering (closely linked with demand-side management programmes) and electrolysed hydrogen 

production. Further discussion of these drivers are included below. 

Input prices – fuel & other electricity costs 

The World Bank notes that shifting prices for inputs used to produce electricity, or for intermediate 
products that are substitutes for or complements to electricity, also affect the electricity demand. The 
changes in end-use electricity prices are primarily supply-driven owing to changes in costs (regulated 
tariffs). An example of forecasting electricity demand in Armenia is used: the methodology is greatly 
facilitated by high-quality historical data, including quarterly series for aggregate income (GDP) and 
end-use electricity prices (World Bank Group, 2017). 

Cassarino et al. (2018) find that electricity demand is influenced by available generation sources. For 
example, there is a high electric heat share in France, from high nuclear and hydro generation. In 
Norway, electricity is the choice for more than 70% of household heating, mainly because almost all 
Norwegian generation is hydro. (Cassarino, Sharp, & Barrett, 2018) The available generation sources 
and their short-run marginal cost influences the wholesale electricity prices and therefore end-use 
electricity prices.  

Peak electricity demand in the next five years could be influenced by the volatility in commodity prices, 
especially gas and carbon prices, as well as the generation mix in the system. In the Office for National 
Statistics’ Opinions and Lifestyle Survey, 32% of those surveyed said their cost of living had risen and 
are cutting back on their use of fuel such as gas and electricity (Office of National Statistics, 2022). They 
also found that energy price rises are more likely to affect lower income households, as they spend a 
bigger proportion of their income on utility bills. Further study into the elasticities of demand for 
electricity by residential, commercial and industrial consumer segments, as well as within different 
income brackets for residential consumers, is needed to determine the degree of influence that 
changing electricity prices will have on peak demand moving forward. 
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EVs 

The deployment of electric vehicles, whilst still in its early stages currently is expected to increase 
significantly beyond 2030 with policy requiring all new vehicles to be electric coming into effect in GB 
in 2030. The (Electric vehicles and the energy sector - impacts on Europe's future emissions) estimates 
that the share of total electricity consumption from EVs in Europe will reach 4-5% in 2030 and 9.5% by 
2050, which the share for the UK reaching approximately 14% by 2050 (EEA). Charging times for EVs 
will be an important consideration in terms of managing the grid, especially during peak times. In a study 
that looked at the impacts of charging EVs in the USA, it was found that EVs that were charged at peak 
time resulted in transformers being overloaded and operating at reduced efficiencies (Shao, 
Pipattanasomporn, & Rahman, 2009). Charging locations are also an important consideration in 
forecasting peak energy demand – for example, (Gilleran, et al., 2021) predict that fast charging of EVs 
at retail sites will be more common in the future. 

The implementation of policy is also an important factor in determining the impact of EV charging on 
electricity demand, and specifically, peak demand. (Jones B. , et al., 2022) forecast that EVs will respond 
to the implementation of Time of Use tariffs in GB, with a greater decrease in peak load than if Time of 
Use tariffs were not implemented. 

(Gnann, Klingler, & Kühnbach, 2018) find that different EV user groups have different charging profiles 
where the charging of commercial vehicles do not contribute to evening load peaks as much as domestic 
charging of EVs does. They find that demand side response reduces the system load by approximately 
2.2GW (2.8%) when domestic and work charging are considered, compared to only domestic charging. 

The smart charging of EVs is expected to be able to shift demand away from typical peak periods, with 
one study suggesting that load can be shifted from early evening hours to the early morning and midday, 
with 25-30% of the charge forecast to shift into a given low demand hour. 

Heat pump adoption 

The gas boilers currently heat around 85% of the UK’s 27 million homes. Decarbonising domestic heat 
is a major challenge for the UK’s net-zero strategy. Heat pumps (HPs) are promoted as an attractive 
renewable alternative to fossil fuel heating systems. Less than 200,000 heat pumps are thought to have 
been installed in UK homes since 2000, and around 27,000 are currently being installed each year. In 
2020, the government pledged for up to 600,000 to be installed per year till 2028, a drastic ramping up 
of installation rates today. (Dr. Arvanitopoulos, Wilson, & Dr. Morton, 2021) Robust government policy 
support for heat pumps and strong user engagement in the adoption process are important drivers for 
the increase in HP demand (Woodfield, 2021).  

Literature agrees that there is a significant challenge in understanding the impact of heat pumps on 
electricity demand, and especially on peak demand. The planned uptake of HPs could have a significant 
effect on electricity demand profiles, especially during colder winters in temperate climates like the UK 
and Ireland. Air Source Heat Pumps (ASHPs), for example, use electricity to transfer heat from the 
outside ambient air to the indoor heating system. The larger the difference between the outside and 
indoor temperatures, the harder the ASHP must work to achieve adequate heat comfort levels (Heinen, 
Turner, Cradden, McDermott, & O’Malley, 2017). As a result, the replacement of the traditional home 
heating (e.g. natural gas heating) with HPs will increase the electricity demand, especially during cold 
winters and extreme weather events (Chesser, O'Reilly, Lyons, & Carroll, 2021). 

Love et al. note four potential problems associated with HP adoption: At the Transmission System 
Operator (TSO) level, there are problems meeting peak demand, and handling ramp rate increases; at 
the Distribution System Operator (DSO) level, there are problems managing excessive voltage drops, 
and making investment decisions on the reinforcement of low voltage feeders and transformers (Love, 
et al., 2017). 

Love et al (2017) use a real-world dataset from HP installations to create an aggregated demand profile. 
They note that the total peak demand is less than the sum of the components because the daily peak in 
heat pump use is not concurrent with the daily peak of the rest of the home. The peak in the aggregated 
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HP profile occurs in the morning, while the national gird peak demand occurs in the evening. Eyre and 
Baruah (2015) estimate that the electrification of residential heating in the United Kingdom (UK) could 
increase peak electricity demand by 30% (Eyre & Baruah, 2015). Asare-Bediako, Kling, and Ribeiro 
(2014) employ a combination of top-down and bottom-up approaches with scaled synthetic load 
profiles representing base loads per household in the Netherlands. A scenario-based approach is used 
for the analysis of different combinations and penetration levels of renewable energy systems including 
different types of heat pumps. In a future scenario of base load and HPs during the winter week, they 
estimate there could be up to a 100% increase in peak load with the increased possibility of voltage 
drops (Asare-Bediako, Kling, & Ribeiro, 2014). 

Embedded generation 

Embedded generation and storage assets are expected to grow in deployment across GB in this period, 
resulting in a reduction in the magnitude of electricity demanded from the grid by users with embedded 
generation assets, as well as a potential reduction in peak demand by users with embedded generation 
and storage assets. Embedded generation in GB increased more than 100% from 14GW of installed 
capacity in 2011 to 31GW installed capacity in 2018 (Gordon, McGarry, & Bell, 2022). The growth in 
embedded generation affects the peak demand on the transmission system, but does not have an effect 
on end consumer (system) peak demand. 

Demand-side management programmes 

Demand Side Management includes building demand reduction measures such as energy efficiency (EE) 
and demand-side response (DSR) programmes. While EE programmes aim to reduce the electricity 
demand in general, DSR programs mainly focus on peak demand reduction by modifying the end-use 
electricity demand patterns and changing the timing and level of instantaneous demand.  

According to Jang et al. (2020), a broad range of DSM programmes for residential and commercial 
buildings are currently implemented in the United States, typically run by utility companies and third-
party aggregators. By participating in these programmes, end-use customers receive an incentive 
and/or other monetary or non-monetary benefits. Such incentives help utilities and power network 
companies maintain a predictable level of demand adjustments that can be made to support the reliable 
operation of the electricity system.  

“Although many DSM efforts for buildings are still in the pilot stages, DSM programmes are projected 
to significantly increase moving forward, particularly as the electric grid is increasingly powered by 
more variable renewable energy sources.” For example, Austin Energy, the exclusive electricity 
provider to the city of Austin, operates the EE/DR program titled the Custom Energy Solutions (CES) 
programme; the participants of this programme continue to grow. Due to the increasing interest in DSM 
efforts for residential and commercial buildings, the demand saving from DSM activities should be 
taken into account in the medium- to long-term demand forecasts (Jang, Byon, Jahani, & Cetin, 2020). 

Whilst there is a current dearth of literature covering the full potential impact of smart demand on total 
peak demand, previous research by Aurora (In-Demand Group Meeting, Dec 2021) has suggested that 
peak demand could be reduced by up to 29GW through the use of smart demand technologies by 2050 
(87GW compared to 58GW) in a net zero world in an average winter cold spell. This reduction primarily 
results from a combination of smart charging EVs, heating technologies with storage or highly insulated 
housing, and hydrogen electrolysis. However, the actual impact of smart demand is likely to be heavily 
dependent on decarbonisation pathways chosen in the heating, transport and industrial sectors and 
further work is needed to understand the plausibility of these pathways. 

Smart metering 

Smart metering is expected to have multiple effects on future electricity demand forecasting. Firstly, 
the installation of smart meters enables real-time information exchange between electricity suppliers 
and end-users. This increases the efficiency of the supply and encourages the rollout of different smart 
energy applications, such as the DSR programmes. Moreover, the high temporal resolution 
consumption data coupled with intermittent energy resources such as wind and solar make electricity 
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demand present unprecedented diversity and complexity. Also, with high-resolution load data (e.g. 
residential smart meter data) becoming increasingly available, data privacy will become an important 
issue that needs to be addressed. “In the new digital era, using private encryption algorithms to protect 
the consumers’ data has become an essential task that researchers must deal with” (Dai, Meng, Dai, 
Wang, & Chen, 2021). 

Hydrogen 

Hydrogen is produced from hydrocarbons (grey and blue hydrogen) or electrolysis of water (green 
hydrogen). Blue hydrogen production typically uses methane, and is the equivalent of grey production 
coupled with CCS. 

Electrolysers produce hydrogen and oxygen. They can be grid connected, co-located with renewables 
(or nuclear), or a hybrid of both. Green hydrogen is expected to be the primary source of hydrogen in 
the net zero world, but production methods can differ and have implications on demand. 

Power demand for hydrogen production could vary significantly, depending on the level of 
electrolyser deployment vs blue hydrogen production that sits outside the power sector. The overall 
impact of hydrogen on the power sector will depend on the mix between green and blue production; if 
all hydrogen is produced by electrolysers, it would add an additional 500 TWh to power demand. 

Flexible electrolysers are expected to mostly avoid producing during the peak and instead produce 
during mid-day and early mornings. 

Most hydrogen electrolysers in GB are expected to come online beyond 2030. The inflexible operation 
of electrolysers (operating at baseload capacity), which is possible if required to supply hydrogen to 
industry, may result in an overall increase in annual demand as well as an increase in peak demand. 

4. Peak demand forecasting methodologies 

4.1 Overview of peak demand forecasting methodologies: Literature review 

The methods available for forecasting electricity demand can be divided into qualitative and 
quantitative analysis.  

• Qualitative analysis involves using expert views of the expected trajectories of key drivers to 
predict future electricity demand, alongside conventional methods such as curve fitting and 
extrapolation. It is used if historical or experimental data is not available, or incomplete. 

• Quantitative analysis uses historical data and assumes that the future development of demand 
follows the trends of the historical data within a certain range. In this case mathematical, 
statistical or more complex computational methods can be used to forecast electricity demand. 

• Hybrid methods utilise a combination of analytical methods to produce demand forecasts. 

Table 3 summarises the various analytical methods available for forecasting electricity demand. 

Out of all methods, regression analysis is still widely used and efficient for long-term forecasting 
(Hammad et al 2020, Nti et al 2020). Hybrid models, which are commonly a combination of statistical 
and advanced methods, e.g. regression with artificial neural networks, have been found to perform best 
in terms of long-term peak demand forecasting accuracy (Dai et al 2021, Nti et al 2020) but are also 
more complex to implement. Machine learning methods such as Artificial Neural Networks (ANN), 
Support Vector Machines (SVM), and fuzzy logic have been found to perform well for short-term 
forecasting in the span of days and weeks (Hammad, Jereb, Rosi, & Dragan, 2020). 

Top-down modelling approaches use aggregated data, usually at a regional or national level, such as 
GDP, population and national or regional energy statistics to determine relationships between these 
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drivers and electricity demand. Bottom-up approaches on the other hand use data collected at an 
individual unit level (be it by household, car user, etc.) to determine the relationship between these 
individual values and electricity demand. Regression and other statistical methods can be applied in 
either a top-down or bottom-up manner (McLoughlin, Duffy, & Conlon, 2012). 

Other advanced modelling methods such as exponential smoothing, Kalman filtering, fuzzy logic, 
support vector machines, and genetic algorithms are not usually used for long-term (multi-year) peak 
load forecasting and are not explored further in this report . 

NGESO’s modelling methodology for the Future Energy Scenarios utilises a combination of bottom-up 
engineering and regression analysis to forecast long-term, multi-year peak electricity demand for Great 
Britain. 

4.2 Key peak demand forecasting methodologies 
Key forecasting methodologies used for long-term, multi-year demand modelling are summarised in 

Table 3. 

Methodology Demand type Granularity Pros Cons Prediction 
error 

Bottom-up 
/engineering 
 

Annual, peak Days, weeks, 
months, 
years 

 

Good for forecasts based on 
variables where little historical 
data and trends are available 

Heavily assumptions-based, 
with the potential for 
mismatch with actual data 
(as assumptions for certain 
variables may not reflect 
reality). 

N/A 

Regression Annual, peak Days, weeks, 
months, 
years 

 

Simple to set-up, easy to 
understand, with a manageable 
number of variables and 
reasonable forecasting 
efficiency 

Assumes that trends seen in 
the historical data would 
continue to apply moving 
forward, which may not be 
the case in certain situations. 

1.43% (Haida & 
Muto, 1994) 

Stochastic 
time series 

Annual Years Useful for modelling outputs 
where correlations with 
variables are based on previous 
results 

More complex than simple 
regression analysis, cannot 
be applied to discreet (non-
continuous) datasets e.g. 
annual peak electricity 
demand. 

6.63% (Jain et 
al. 2018) 

Peak Days, weeks, 
months 

Time series 
decomposition 

Peak Days, weeks, 
months 

7.88% (Turner 
et al. 2012) – 
for monthly peak 
loads 

Artificial 
neural 
network 
(ANN) 

Annual, peak Days, weeks, 
months, 
years 

Found to be more accurate 
than simple statistical methods 
in certain situations (e.g. short-
term modelling) 

Results are heavily 
dependent on historical data 
where trends may not apply 
going forward. 
Computationally complex to 
set up. 

4.57% (Ghods 
& Kalantar, 
2010) 

Hybrid Annual, peak Days, weeks, 
months, 
years 

Can be more accurate than the 
individual methods employed. 

Computationally complex to 
set up. 

5.99% (Dai et 
al. 2021) 

- for daily peak 
loads 

Source: Aurora Energy Resources 

Table 3: Summary of commonly used long-term, multi-year electricity demand forecasting 
methodologies 
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4.2.1 Regression 

Regression models express electricity demand as a function of demand drivers based on historical data. 
As a result, a relationship between the drivers and electricity demand can be obtained to forecast 
electricity demand. Econometric effects such as GDP, consumer price index and population have been 
considered in the past as drivers of peak electricity demand forecasts using multiple regression models 
in other countries (Mtembo, Taylor, & Ekwue, 2014), (Haida & Muto, 1994). However, Haida et al 2014 
found the performance of their model on larger fluctuating load patterns to be unsatisfactory. 

Regression models are simple to set-up, easy to understand, with a manageable number of variables and 
reasonable forecasting efficiency. However, this method does make the assumption that trends seen in 
the historical data would continue to apply moving forward, which may not be the case in certain 
situations (Dai et al 2021). 

As such, regression analysis is usually combined with other techniques to improve on its accuracy in 
forecasting peak electricity demand. 

4.2.2 Time-series forecasting 

Time series forecasting can be conducted either through a stochastic time series model or a time-series 
decomposition model. Stochastic time series models can be generally divided into: the auto-regression 
(AR) model, the moving average model (MA), the autoregression moving average model (ARMA), the 
auto-regression integrated moving average (ARIMA) model and the seasonal auto-regression 
integrated moving average model (SARIMA). 

The underlying principle of autoregressive models is that the present value of the series can be 
expressed as a linear combination of past values, thereby allowing it to predict future behaviour based 
on past behaviours. This method is suitable for use in situations where there is a correlation between 
the present value of a time series and its previous values. 

A time-series decomposition model for electricity demand forecasting usually adopts the addition or 
multiplication model to split the original time series into four sub-parts - the continuous change of peak 
load demand in a long period, the regular seasonal change of peak load demand, the periodic change in 
peak load demand over years, and the unexpected change of the peak load demand caused by random 
factors. The resulting forecast is either a sum (addition) or product (multiplication) of these four parts. 

When predicting peak electricity demand, each component is first calculated separately then passed 
through the addition model or the multiplication model to obtain the final prediction. 

This method is better suited to model daily, weekly or monthly peak load demand up to a year ahead 
rather than forecasting multi-year annual peak load demand as NGESO seeks to do in their Future 
Energy Scenarios (FES). 

Literature reviewed show that multiple papers have used these methods to successfully model year 
ahead weekly and monthly peak loads with MAPE 7.88% (Fong & Yang, 2011), (Turner, Downing, & 
Bogard, 2012)) and day-ahead daily peak loads (Choi, Park, Kim, & Kim, 1996). However, this method 
has not been used for multi-year peak load forecasting. Rehman et al (2017) found that the ARIMA 
method was suitable in forecasting long-term (multi-year) electricity demand for Pakistan (as opposed 
to specifically peak demand). Jain et al found that using the ARIMA method for multi-year demand 
forecasting yielded a MAPE of 6.63%. 

4.2.3 Advanced forecasting methods 

Advanced forecasting models that have been used to model electricity demand include modern AI and 
machine learning based methods such as artificial neural network (ANN) and deep learning, support 
vector machines (SVMs), and ensemble models. 
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Not all these methods are suitable or have been applied for long-term, multi-year peak electricity 
demand forecasting. 

An artificial neural network (ANN) model consists of artificial neurons in multiple layers for information 
communication. A typical ANN consists of the input layer, the hidden layer, and the output layer. Except 
for the input layer, each neuron in the ANN is connected to neurons of the former layer (i.e. the input 
neurons), with each connection corresponding to a weight. The sum of the product of all input and the 
corresponding connection weights are passed to an active function to calculate each neuron’s final 
value. 

(Zakarya, Abbas, & Belal, 2017) conducted long-term (10-year) electricity demand forecasting using 
ANN and ARIMA to forecast the electricity demand of Kuwait. Variables used included temperature 
and humidity, average salary, GDP, oil prices, population, number of households, vehicle passengers, 
currency exchange rates, and economic indicators such as total imports and exports. The study 
concluded that ANN outperformed ARIMA and weather parameters were found to be more significant 
than average salary, GDP and oil prices in influencing electricity demand. 

(Ghods & Kalantar, 2010) used an ANN model to predict annual electricity demand in Iran for 5 years 
with an average error of 4.57%. Nti et al (2020) concluded that for long-term, multi-year annual demand 
forecasting, the ANN and autoregression models perform the best out of all tools. However, the 
downside of ANN models are that they are computationally complex and time-consuming to set up and 
run. 

5. National Grid ESO’s peak demand forecasting methodology 

5.1 Key drivers 

Summary of recommendations on key drivers (list top key drivers to consider and what we believe 
needs to be considered): 

1. Bottom-up modelling of residential, industrial and commercial electricity demand 

2. Consideration of socioeconomic factors in bottom-up model – as they have been found to be 
the key drivers of long-term electricity demand trends 

3. Re-consideration of the Average Cold Spell (ACS) adjustment to historical electricity demand 
data, and in line with that, a consideration of future weather projections as a result of climate 
change 

 

Table 4 shows a full list of key demand drivers identified in Section 3 alongside the NGESO FES 
assumptions, and a discussion of these assumptions based on the literature reviewed and other 
considerations. 
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 Key 
demand  drivers 

NGESO FES Assumption/methodology Discussion of methodology 

W
e

a
th

e
r 

Temperature 

▪ Indirectly accounted for since historical 
data is used to calculate residential demand 

▪ Climate projections are explicitly 
considered in the heat demand model 

▪ Important in considering changing effects from 
climate change that may not be captured in 
historical demand data 
 

Average cold 
spell (ACS) 

▪ The underlying methodology in the 
calculation of annual and peak demand – 
historical demand data is weather-
corrected to reflect demand in the average 
cold spell (50% chance of exceedance) 

▪ May not be suitable for future use as it does not 
capture extreme weather events associated 
with climate change 

▪ If used, will need to consider including a forecast 
for extreme weather situations 

Extreme 
weather events 

▪ Extreme weather events are not accounted 
for in the current methodology, as the ACS 
method adjusts data to exclude extreme 
weather events 

▪ Can be forecast for a set of potential extreme 
weather events and added to ACS demand – 
requires further study 

Hot and cold 
days 

▪ Not explicitly accounted for in the current 
methodology 

▪ The likelihood of cold days is expected to 
decrease as a result of climate change 

  Other weather 
drivers 

▪ No explicit consideration of additional 
weather drivers such as humidity, wind 
speed and solar radiation, amongst others 

▪ Not believed to significantly affect peak demand 

S
o

ci
o

e
co

n
o

m
ic

 f
a

ct
o

rs
 

GDP ▪ Not factored into the model 

▪ Could potentially be indicative of industrial and 
commercial activity and corresponding demand, 
however a clear decoupling of GDP from peak 
demand from 2007 onwards was observed in 
literature 

Income ▪ Not factored into model 
▪ Believed to be linked with GDP, and found to be 

linked with residential demand, though this 
correlation needs to be validated for GB 

Population ▪ Not factored into model 
▪ May not be a significant contributing factor to 

the population in a developed country – to be 
explored in WP2 

Industrial 
production  

▪ Not considered – currently industrial 
demand is calculated as the difference 
between total demand and residential 
demand 

▪ To be tested in WP2 to determine correlation 
with historical demand data 

Social 
behaviours 

▪ Not considered 

▪ These may be significant drivers of demand, but 
further study is required to determine which 
behaviours are more likely to influence demand 
moving forward and their magnitude 

  Electrification 
of heat 

▪ Modelled in detail using a bottom-up heat 
model 

▪ Lack of historical data to determine a correlation 
with demand suggests the current bottom-up 
modelling approach to be the best practice 

T
e

ch
n

o
lo

g
y

  

Electric vehicles ▪ Modelled based on historical data 
▪ A bottom-up approach should be explored to 

more accurately forecast behaviours expected 
from the charging of electric vehicles 

Smart 
technologies 
(including 
demand-side 
management) 

▪ Smart heat pumps modelled in the heat 
model 

▪ Smart EVs modelled in the EV model, based 
on assumptions of expected adoption rates 

▪ Demand-side management not actively 
modelled, but calculated as the difference 
between actual daily peak demand and peak 
demand using a normalised profile 

▪ Potential to define a more robust approach to 
modelling time-shifting of demand as a result of 
the uptake of smart technologies 

▪ Further study is required to develop this 
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 T
e

ch
n

o
lo

g
y

 

Smart metering 
▪ Smart meter data are not currently utilised 

in modelling methodology 

▪ Recommend studying the accuracy of 
forecasting using smart meter data in more 
detail 

  Energy 
efficiency 

▪ Not actively accounted for 
▪ To be explored as a potential driver in WP2 
▪ Believed to be a contributing factor to changing 

energy demand levels over time 

  

Electrolyser 
hydrogen 
production 

▪ dispatch for electrolysers, however, can 
vary by the hour 

▪ four dispatch profiles, ranging from hourly 
load without any storage, through daily 
fuel-cost optimised profiles. Profiles with 
seasonal storage and yearly fuel-cost 
optimisation are also considered 

▪ To potentially consider inflexible electrolyser 
operation (but the model may decide that the 
more economical option is to produce blue 
hydrogen), however we do expect the cost of 
electrolysed hydrogen to decrease to below that 
of blue hydrogen in the long-term (30-year) 
horizon 

O
th

e
r 

Shifting input 
prices 

▪ Not considered 

▪ Prices have been found to influence residential 
electricity user behaviour, but may become 
more significant if half-hourly retail pricing is 
introduced – a consideration for future 
forecasting methodology revisions 

Embedded 
generation 

▪ Not currently considered in system peak 
demand forecasts (but accounted for based 
on limited data of existing embedded 
generators when looking at total gross 
demand) 

▪ Important to consider when forecasting peak 
system demand as there may be a negative 
correlation between embedded generation  and 
peak system demand 

Policy  ▪ Accounted for in the heat model 

▪ Ideally should be accounted for across all aspects 
of long-term forecasting, but difficult to include 
in the models if policy is not clearly defined in 
advance 

Source: Aurora Energy Resources 

Table 4: Discussion of NGESO’s assumptions on key demand drivers 

 

5.2 Methodology 

5.2.1 Discussion of the ACS and 1-in-20 methods for modelling peak demand 

The average cold spell (ACS) peak demand is defined as the level of peak demand for which there is a 
50% probability of exceedance in a given winter. It is the approach used by NGESO to model peak 
demand considering what is connected to the system but discounting extreme weather effects. 

“The estimation process involves simulating 20,000 synthetic weather winters, each constructed from 
week-long blocks of temperature data sampled from around 30 historic winters” (Wheatcroft et al 
2022). This is mapped to a demand series using a set formula that relates demand with what is 
connected to the system (basic demand less unmetered generation) and weather, including randomly 
sampled residuals. The ACS peak demand is the median winter peak demand across these 20,000 
synthetic peak seasons. 

“1-in-20 peak day demand is the level of daily demand that, in a long series of winters, with connected 
load held at the levels appropriate to the winter in question, would be exceeded in one out of 20 winters, 
with each winter counted only once” (Wheatcroft et al, 2022). 

Limitations of the ACS methodology: 
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▪ The ACS method is not able to account for peak demand due to extreme weather events, that are 
expected to occur with greater frequency and magnitude in the coming years due to climate 
change 

▪ In its current form, it is unable to capture the effects of future drivers and technologies that 
historically have not had a significant influence on peak demand, but are expected to become 
significant drivers of peak demand in future years 

o Literature reviewed reveals that historically, there has been a moderate correlation between 
temperature and electricity demand for Great Britain (0.5 < R2 < 0.8; R2 is the regression 
coefficient) (Thornton et al 2016). This could be attributed to the fact that only a small 
proportion of heating in the country is electrified currently 

o It is expected that a stronger correlation between temperature and electricity demand will 
develop as the proportion of electric heating increases and social behaviours change to 
incorporate more use of air-conditioning during summer months 

o In line with this, heat waves are expected to become more prevalent moving forward 
(Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical 
Science Basis, 2013), raising the need to review and forecast peak summer demand in 
addition to the standard ACS peak demand, for better visibility of period of potential 
maximum system constraint 

▪ With increasing demand from electric vehicles, the applicability of the ACS method to forecast 
peak demand should be studied further as this demand may not have a correlation with the ACS 
as demand, leading to potentially inaccurate forecasts of peak demand if the ACS method 
continues to be used 

o In this case, a hybrid approach to consider the ACS methodology in combination with a 
statistical approach to forecast electricity demand from EVs may yield better accuracy 

 

Limitations of the 1-in-20 peak day demand methodology: 

▪ 1-in-20 peak day demand is not able to account for extreme weather events due to it being a 
relatively new weather phenomenon not present to the same magnitude and intensity in 
historical weather data 

o This is something to be examined in more detail using historical data 

▪ Similar to the ACS methodology, the 1-in-20 methodology is not able to capture the changing 
effects of future technologies and efficiencies along with social behaviours – the effects of 
which need to be studied in more detail to determine how material these drivers are in 
influencing peak demand 

o (Anderson & Torriti, 2018), in their study of UK electricity demand from 1974 to 2014, 
highlight how changing social behaviours (patterns in labour market participation, travel, 
personal/home care, food-related activities, etc.) influence the time-shifting of demand, 
indicating that this is an important trend to study and incorporate into future peak demand 
forecasting methods on top of the time-shifting effects of smart heating, smart EVs and 
demand-side management programmes 

Overall, it appears that one methodology on its own presents shortcomings in forecasting peak demand 
for the long term. This suggest that a hybrid approach, incorporating a combination of statistical 
methods to predict the effects of future drivers on peak electricity demand, alongside the ACS method 
may yield more promising results. 
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5.2.2 Main model 

Further to the overarching methodology, this section dives into key steps within the modelling of 
system peak demand in the AEDAS model by NGESO, alongside a discussion of how these assumptions 
could be explored in more detail to improve overall forecasting accuracy. 

 

Calculation step Description Discussion 

ACS peak 

demand for 

residential, 

commercial and 

industrial 

demand 

▪ Weather-adjusted historical demand 

data for all of GB 

▪ Normalised to exclude extreme weather conditions – but 

increasingly will need to consider this as extreme weather 

conditions become more prevalent with climate change 

▪ “Single extreme weather events are less likely to pose a 

risk for the power production sector and energy security 

than are compound extreme events” (Anel et al 2017) 

Annual to peak 

demand ratio 

▪ Calculated from 2,000 home metres 

from ELEXON 

▪ Sample size and location 

▪ Validity of ratio methodology 

▪ Will also need to review summer peak demand – as heat 

waves are expected to become more prevalent 

(Intergovernmental Panel on Climate Change (IPCC). 

Climate Change 2013: The Physical Science Basis, 2013) 

Synchronisation 

of peak demand 

components 

▪ The total peak demand is obtained 

by summing up peak demand from 

the various sectors 

▪ Timing of contribution of electricity demand with key 

demand drivers should be explored in more detail – can be 

explored at a preliminary level in WP2, but may require 

more in-depth study beyond this 

Transmission 

losses 

▪ Estimate these losses at the system 

level to average around 8% 

▪ Impact on losses in the case of extreme hot days 

(transmission & distribution systems become less efficient 

at high temperatures), indicating that more robust 

estimation of losses is needed (Anel et al 2017) 

Industrial and 

commercial 

demand 

forecasting 

▪ Calculated as the balance in peak 

demand after subtracting forecast 

peak residential demand 

(approximately 50%) 

▪ Literature reviewed reveals many types of bottom-up 

models to forecast industrial energy consumption 

(FORECAST, Save), and should be looked into to 

determine if NGESO’s forecasting accuracy can be 

improved this way (Daniels & Van Dril, 2007) 

Residential 

demand 

▪ Annual residential demand is 

projected forward using historical 

trends 

▪ Inherently assumes similar trends as history – in reality, 

consumer behaviour is found to change in the long term 

with socioeconomic factors and cultural norms (Anderson 

& Torriti, 2018) 

Determination of 

demand sector 

ratios 

▪ Sector components such as heat, 

microgen & storage, losses, transport 

and appliances are distributed and 

proportioned to each sector 

▪ This was not covered by the literature reviewed, but is 

potentially an area requiring further analysis by NGESO 

Seasonal 

variations 

▪ Indirectly accounted for by using 

historical data, and in the demand 

profiles for heat and transport 

▪ Influences the value for annual demand rather than peak 

demand, but important to be considered in further detail  

Summer peak ▪ The current peak demand 

forecasting method assumes a 

winter peak 

▪ Recent weather trends have shown the increasing 

occurrence and magnitude of summer peak demand in GB 
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Daily peak – 5-

6pm 

▪ Currently assumed to be the hour 

during which peak demand occurs 

▪ This is expected to change with the emergence of more 

smart technologies 

Source: Aurora Energy Resources 

Table 5: Discussion of key steps in NGESO’s main long-term demand forecasting model 

 

5.2.3 Heat 

NGESO’s modelling of electricity demand for heating involves the use of a bottom-up engineering 
model that considers the most common building archetypes alongside heating technologies to solve for 
the most cost-effective heating solution for each archetype. This model also takes into account 
consumer willingness to pay and policy support in the technology lifetime costs. 

 

Calculation step Description Discussion 

Hourly and annual 

heat demand 

▪ The model calculates the heat 

loss rates for each building 

archetype and from this 

determines the hourly and 

annual heat demand 

▪ Profile applied based on a 1 in 20 demand or weather year 

(from historical data), which may not be representative of 

future years due to changing weather trends from climate 

change 

Heating technology 

costs 

▪ The CAPEX and OPEX of gas, 

electrified, hydrogen and district 

heating production and 

distribution are modelled 

▪ It would be important to ensure that these costs account for 

improvements in heating efficiencies as newer technologies 

mature, and input costs e.g. hydrogen production decrease 

over time 

Determination of 

proportion of 

electrified heat 

demand 

▪ The final technology pathways 

are chosen by the model based 

on consumer willingness to pay, 

accounting for technology costs 

and policy incentives 

▪ Accounting for policy incentives and consumer behaviour is 

good practice and should be considered across demand 

sectors 

Industrial space 

heating 

▪ The model does not account for 

industrial space heating needs 

▪ This amount may be small enough compared to residential 

and commercial heating demand to be excluded without any 

material consequences on the accuracy of the annual and 

peak demand forecasts 

Demand profile for 

each technology 

type 

▪ The overall heat demand profile 

does not differ by type of heating 

(electric or gas) 

▪ Literature shows that the dominant driver for heating 

demand is temperature 

▪ However moving forward, with increasing heat pump 

adoption, we expect the demand profiles from electrified 

heating to change – requires further in-depth study to 

assess the behavioural changes expected with heat pump 

adoption, and how heat pump operating principles may 

affect the electrified heating demand profile 

▪ We expect that with the adoption of heat pumps, that 

residential consumers would be more likely to employ it for 

cooling during summer months, and may result in summer 

peaks close in magnitude to winter peaks, as well as an 

overall increase in annual electricity demand from more 

constant use of air-conditioning in the summer months 
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Demand profile for 

each building 

archetype 

▪ Same hourly profile is applied for 

all building archetypes 

▪ Residential should be different from commercial and 

industrial space heating profiles 

▪ Potential source of discrepancy in a post-Covid world where 

there have been behaviour changes (e.g. more people now 

working from home) 

Interpolation of 5-

year results to 

obtain yearly 

values 

▪ Calculations are made for each 

5-year time step with 

intermediary values calculated 

as a straight line between the 

calculated points 

▪ Interpolation risks missing out on important inflection 

points in trends e.g. when new policies come into play, fuel 

price trends, and weather events 

Source: Aurora Energy Resources 

Table 6: Discussion of key steps in NGESO’s long-term heat demand forecasting methodology 

 

5.2.4 Transport 

Overall, there is a need to better account for the uptake and usage of smart EVs in forecasting annual 
and peak demand. What proportion of electricity demand from EVs occurs at a fixed time due to 
practical daily routines, and what proportion of demand can practically be catered to by smart charging? 

There is also a need to study the timing of the peak for smart EV charging profiles, and determine how 
this fits in with other demand sector peaks. A final key consideration is how temperature affects EV 
electricity requirement, with lower battery efficiencies in colder months and greater need for engine 
and cabin heating/cooling in the winter and summer months. This may affect peak demand in colder 
months, even with some time-shifting of demand from smart charging. 

 

Methodology Description Discussion 

Uptake rate for 

electrified transport 

▪ Calculated by considering the number 

of vehicles on the road, miles, 

efficiency of doing those miles, the 

associated costs and policy effects 

▪ Can be assessed against historical uptake rates to 

determine whether model is under or 

overestimating uptake 

Charging profiles ▪ Demand is split by charging type – 5 

types: residential, work, rapid, public, 

HGV depot 

▪ Profiles for each charging type 

developed based on real charging data 

from 2017-18 (private & public data) 

▪ Applicability of the profiles from 2017-18 for future 

EV charging behaviours needs to be studied in 

further detail, especially with the increasing uptake 

of smart EVs 

▪ Further investigation required to better model 

smart charging profiles – this will become 

increasingly important as the proportion of smart 

vehicles increases 

▪ Further investigation needed to determine effect of 

temperature on EV electricity demand 

Contribution of each 

profile to total EV 

charging demand 

▪ Proportions change each year as 

behaviours/trends change 

▪ There is the opportunity to explore a bottom-up 

approach to forecast the expected combination of 

EV charging profiles 

Source: Aurora Energy Resources 

Table 7: Discussion of key steps in NGESO’s long-term transport demand forecasting methodology 
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5.2.5 DSR (excluding heat and EV) 
Overall, there is potential for the DSR modelling methodology to be further improved through a 

bottom-up approach that needs to be informed by a deeper investigation of future DSR trends. 

Common methodologies to inform bottom-up modelling include conducting pilot programmes to 

determine user demand profiles in response to demand-side management, or obtaining results from 

similar programmes in other countries with comparable electricity usage patterns. Studies reviewed 

suggest that DSR profiles are likely to be driven by user behaviour and electricity prices – further 

study will be needed to determine in more detail the components and weightings of these drivers in 

influencing DSR. 

Ultimately, local government support and policies will define the success of the implementation of 

demand-side management programmes. Study of policies and programmes in other countries may 

inform best practices for such policies and programmes in GB. 

 

Calculation step Description Discussion 

Summer 

demand-side 

response 

▪ No demand side response is currently 

assumed due to little information on 

summer behaviour, particularly demand 

turn-up 

▪ Potential to explore this further given expectations of 

increasing summer peak demand 

DSR profile ▪ The real historical daily demand profile is 

subtracted from the short-term daily 

demand profile. This difference is 

attributed to DSR and embedded 

generation. 

▪ Important to investigate further the actual and expected 

DSR profiles based on a bottom-up approach as it may be 

different to the regular demand profile that is currently 

assumed 

DSR value ▪ DSR is assumed to be 50% of the 

difference between historical daily 

demand at peak (5-6pm) and the forecast 

short-term daily demand at peak (5-6pm) 

▪ This is assumed to be industrial and 

commercial DSR (but mostly industrial) 

▪ In line with a review of methodologies to determine a 

representative DSR profile, it would be also important to 

test the validity of this assumption 

▪ Further study is needed to identify a suitable method to 

ascertain contribution of DSR to a flattening of peak 

demand 

Residential 

DSR 

▪ Residential DSR starts coming in as time 

of use tariffs come in, and smart EV and 

heat pumps increase. 

▪ Careful study is needed to ascertain the impact of the 

introduction of Time of Use tariffs on consumer behaviour 

as previous studies found this to not significantly influence 

peak demand 

▪ Several researchers warn against being too optimistic 

about the potential of time shifting households’ electricity 

consumption by turning our attention to the temporal-

spatial interconnectedness of practices and how collective 

temporalities structure everyday practices even at the 

household level (Friis & Christensen, 2016) 

Appliances ▪ Assume 10-15% of peak residential 

demand from whitegoods, people only 

willing to shift this at most. Based on 

study 10 years ago 

▪ Given the changing social behaviours and work-patterns, 

this assumption may need to be revised 

▪ Further investigation is needed to ascertain what 

adjustments are needed to be made to this assumption to 

better apply to post-Covid behaviours, on top of forming a 

view on longer-term trends 

Source: Aurora Energy Resources 

Table 8: Discussion of key steps in NGESO’s long-term DSR forecasting methodology 



PEAK ELECTRICITY DEMAND FORECASTING 

A comprehensive literature review of peak electricity demand forecasting methodologies 

 

 

26 

 

5.2.6 Hydrogen 

As with heat, the hydrogen model is a bottom-up engineering model based on expectations of uptake of 
various types of hydrogen technologies and the costs of the different types of hydrogen manufactured 
(blue, electrolysed). 

While not explored in detail for this particular review, it would be important to ensure that the full range 
of operating assumptions of hydrogen electrolysers, including inflexibly operating electrolysers, is 
considered. This may have significant implications of the forecasting of system peak demand moving 
forward in the next 10+ years, as more green or electrolysed hydrogen is produced for industrial use 
and the costs of producing green hydrogen are expected to drop significantly, potentially below that of 
blue hydrogen. 

Flexibly operated hydrogen electrolysers may be able to adjust their operation timing to avoid peak 
demand periods, effectively avoiding adding to peak demand, and conversely would be able to operate 
during times of excess electricity supply to avoid the need for the curtailment of intermittent 
generation assets during times of low demand. However inflexibly operating electrolysers (that might 
be required to do so for industrial hydrogen production) may add to peak demand. Further study into 
the expected trajectory of growth for flexible and inflexible hydrogen electrolysers in GB is required to 
be able to forecast their contribution to peak demand. 

6. Discussion – areas for further study 

Based on a review of literature and NGESO’s current long-term peak demand forecasting methodology, 
as well as Aurora’s own red flags and suggestions for consideration, the following areas for additional, 
in-depth, consideration are proposed. 

6.1 Drivers 

▪ Weather – To fully understand the impact of weather on future peak demand, Aurora considers 
further investigation is needed to fully understand the potential implications extreme climate 
change could have on temperatures in Great Britain, including both on maximum summer 
temperatures and minimum winter temperatures as well as the probability, frequency and 
magnitude of extreme weather events in the long term. Consideration would then need to be 
given to the extent to which these temperatures maximum and minimums could be expected to 
influence peak electricity demand in the country, considering the likely uptake of the 
electrification of heating and the potential for increases in air-conditioning to usage to drive 
summer demand peaks. However, the impact of weather on other electricity demand, such as EV 
demand also needs further study, as literature reviewed suggest significant fluctuations in the 
amount of electricity required by an EV in the winter months as opposed to the summer months 
due to the operating efficiency of EV batteries at different temperatures, and heating/cooling 
requirements (of both the cabin, but also the battery itself) in the cooler/warmer months (Koncar 
& Bayram 2021). 

▪ Decarbonisation policy – In order to meet the CCC’s targets of reducing emissions by 78% 
compared to 1990 levels across all sections of the economy by 2035, significant electrification of 
the transport, heating and industrial sectors will be required. This is recognised across the 
literature and by NGESO as a major driver of future electricity demand. However, Aurora 
considers the actual uptake of EV’s and heat pumps is also likely to be policy driven. When 
considering other electricity usage, other factors such as future energy efficiency targets and 
housing policies, may also be important factors to consider. 

▪ Socioeconomic factors – many papers reviewed highlighted the link between socioeconomic 
factors (population, income, industrial productivity) and long-term electricity demand, which is a 
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dimension currently not modelled in detail in NGESO’s existing demand forecasting 
methodology. It may therefore be necessary to study in more detail the extent of the correlation 
of socioeconomic factors with electricity demand, particularly where this may impact the uptake 
of new technologies, to determine which socioeconomic factors could be usefully incorporated 
into long-term peak electricity forecasting for GB moving forward. 

▪ Demand shifting– these are currently modelled by NGESO only to the extent of economic 
decision-making in certain models that feed data into the AEDAS model (e.g. the heat model). 
However, the literature review conducted reveals that changing social behaviours do have the 
potential to materially impact electricity demand, suggesting the need for further study to 
determine the magnitude of impact they have on electricity demand alongside a determination 
of how these behaviours are projected to change moving forward in terms of appliance usage, 
transport usage, and times of use as a result of an increasing rate of adoption of smart appliances, 
heat pumps and vehicles. A final consideration is of how the introduction of half-hourly retail 
pricing could impact consumers’ electricity use, something which would need further study and 
modelling in order to understand how prices may potentially affect residential user behaviour. 
The adoption of heat pumps in residential space heating has the potential to change user 
behaviour to also consume electricity in large amounts during summer months (when currently 
this is not a contributing factor to demand due to the low penetration of air-conditioning in GB 
homes). 

▪ Other demand considerations – the current review has focused on demand drivers that are 
linked to transmission or end-user electricity demand in Great Britain. On top of this, it is 
important to also consider the potential impact of other sources of demand on peak electricity 
demand within the GB transmission system, and how this might impact network management 
needs going forward. Aurora believes some overlooked considerations here are: 

o The compounding effect of interconnector export demand on top of peak demand in GB, and 
how this may affect generation requirements within GB.  

o The potential increase in embedded/BTM generation and storage and its impact on peak 
transmission system demand. 

o The full potential impact of a future hydrogen economy, where significant proportions of 
demand could feasibly be shifted away from peak demand periods/high power price periods. 

o The impact of hydrogen deployment in heating could result in lower than predicted 
electrification of heating and therefore lower than expected temperature driven demand. 

o Major system shocks such as the impact of COVID-19 on electricity demand. Whilst the 
cause of a system shock may be difficult to predict, thought should be given as to whether 
major, mass, near-simultaneous, changes of behaviour ought to be considered. 

6.2 Methodology 

Whilst NGESO has relied on an ACS methodology to determine peak demand, given expected changes 
in weather due to climate change, alongside changing user behaviours, a detailed review of alternative 
modelling methodologies could facilitate the integration of suitable alternative methodologies with 
NGESO’s existing methodology to ensure a more robust forecast moving forward. Additionally, 
alternative statistical methods could also be explored for better accuracy. Further study into the use of 
smart meter data for forecasting is also justified given the expected increase in smart meter usage in 
GB moving forward (across the residential, commercial and industrial sectors), which could enable 
purely statistical forecasting of peak electricity demand. 

While the current methodology utilised by NGESO is robust in its bottom-up modelling, a number of 
assumptions require further review to determine whether improvements need to be made for better 
forecasting accuracy. 
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▪ Assumptions – current assumptions that could be challenged are: 

o The peak demand time assumption of 5-6pm 

o That peak demand occurs in the winter triad days 

o The trends for summer peak demand (and whether there is a point of intersection with peak 
winter demand in the long term) 

o The assumed value for transmission losses of 8% of residential, commercial and industrial 
demand – literature reviewed indicates a variation in losses by temperature and demand, 
which should be studied in further detail to ensure it is better capture in the current 
modelling methodology 

The expected magnitude of change of future demand trends based on the key drivers identified is 
required to determine how the existing NGESO methodology can be improved upon. This will be 
explored further in Work Package 2 : 

▪ Annual peak demand is made up of a combination of consumer behaviour & synchronisation, 
weather factors, socio-economic factors and policy 

▪ Over the 5-, 10- and 30-year horizon, the factors driving changes in peak demand are likely to 
include behavioural change, technological advancement and uptake, fuel switching in heat and 
transport, policy and embedded generation buildout 

▪ Peak demand is expected to be a combination of individual consumption components that align 
with the predominant synchronous factors 
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