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Executive Summary 

In the Dynamic Reserve Setting (DRS) project, we have developed a set of proof-of-

concept machine learning models (DRS PoC) to recommend reserve levels based on 

dynamic data such as wind speed forecasts. The problem is described by National Grid 

ESO1 in the following way: “Currently ESO sets reserve levels that vary according to 

electricity demand seen at different times of the day and week – with levels informed by 

historical generation and forecasting errors and adjusted by forecast renewable generation 

output. These reserve levels could potentially be optimised to take better account of the 

effect on the system of forecast weather conditions, by linking generation and forecasting 

errors to weather driven effects or other variables, and buying reserve in day-ahead 

timescales.” The DRS PoC, on day-ahead timescales, uses available data to recommend 

reserve levels that meet a 1 in 365 risk appetite, and does so in a way that is explainable.  

Results: Value to NGESO 

Comparing with NGESO’s current approach (looking at positive reserve at a 4-hour lead 

time), we find that the DRS PoC gives fewer shortfalls that are, both on average and when 

considering the maximum, smaller.   

Along with the recommended reserve levels, the DRS PoC generates a new and 

innovative explainability report to show, in a visual way, the impact of different features – 

things like the wind speed – on each reserve recommendation.  This explainability report 

provides a future-proof approach through moving away from the pre-defined pots of 

reserve that are currently used to provide explainability, and through using a model-

agnostic approach that allows the underlying reserve setting models to be changed 

without the explainability approach needing to be changed.  

Approach 

Data processing is the foundation of DRS, with significant effort applied to go from data 

from multiple NGESO systems to one cleaned, processed, database ready for model 

building.  Future work on the same dataset could use this database as a starting point, 

getting straight into producing additional insight from the data.  The data processing 

 

1 See https://www.nationalgrideso.com/news/national-grid-eso-and-smith-institute-begin-industry-pioneering-
dynamic-reserve-setting-drs  

https://www.nationalgrideso.com/news/national-grid-eso-and-smith-institute-begin-industry-pioneering-dynamic-reserve-setting-drs
https://www.nationalgrideso.com/news/national-grid-eso-and-smith-institute-begin-industry-pioneering-dynamic-reserve-setting-drs
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involves calculating the total reserve error that the reserve setting models are trained on.  

This total reserve error combines upwards (for positive reserve) or downwards (for 

negative reserve) reserve error (URE/DRE), wind error, interconnector error, reserve for 

response error, and demand error.  We have extended the URE definition and created a 

DRE definition, providing a solid foundation for model building. 

The reserve setting models use gradient boosted trees: a machine learning approach that 

has been repeatedly shown to deliver best-in-class performance when modelling tabular, 

multi-source data, as is the case here.  Through selecting features of the data with the 

greatest predictive power and tuning each model’s hyperparameters, we build models for 

both positive and negative reserve that perform well when compared with a constant 

baseline.    

Recommendations 

We recommend that NGESO productionise the DRS PoC and explore additional valuable 

innovation opportunities.  

First, we recommend that NGESO productionise the models to take advantage of the 

value that the DRS PoC has demonstrated.  We expect that this work will involve building 

robust data pipelines that connect to existing NGESO databases, further testing and, 

where appropriate, automation of the code needed to train and run the models, creating an 

API for accessing model outputs, and creating a user interface for the DRS PoC.  Further 

work could also build on and enhance the approach, for example through exploring open 

data sources that could enhance the DRS PoC’s predictive power.  

Likewise, we recommend that NGESO consider exploring two opportunities for innovation: 

using short-notice time series models to enhance the predictive power of the reserve 

setting models, and an alternative approach to calculating URE that will overcome the 

limitations of both the approach currently used by NGESO as well as the extension of that 

approach that is used in this DRS project, and will provide a way of calculating URE that is 

resilient to future changes in the electricity system.    
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Introduction 

In the Dynamic Reserve Setting (DRS) project, Smith Institute have developed a set of 

proof-of-concept machine learning models that recommend reserve levels based on 

dynamic data such as wind speed forecasts.  This proves the concept that the current 

reserve setting approach can be improved by using dynamic reserve setting to reduce 

under-holding and improve transparency with better explainability.  Productionising the 

models and integrating them into NGESO’s systems would improve on the current reserve 

setting process, which is done twice a year, to provide dynamic day-ahead reserve setting.  

This would enable NGESO to buy reserve at day-ahead time scales and to set reserve 

levels more accurately.  

To balance the grid, ENCC draw on various forecasts to aid their decision making, and, 

like all forecasts, these are subject to errors.  Reserve is needed to insure against those 

forecast errors: if national demand is much lower than forecast, for example, then reserve 

is needed to fill the gap.  The reserve levels should be set neither too low – this could 

threaten system security – nor too high, as this could lead to high costs and emissions.    

NGESO therefore need models that use available data to predict the forecast errors and 

recommend a reserve level that meets NGESO’s risk appetite.  The output from these 

models needs to be made available to ENCC and, importantly, to be something that they 

can trust.  To build trust in the models, they must be explainable: not only do ENCC need 

to see the recommended reserve level, but they also need to see what has led to that 

recommendation.  The scope of the DRS project was to develop a proof-of-concept of 

such a set of models, using a snapshot of 3 years’ worth of historical data extracted from 

NGESO systems.  Productionisation of the models, and their integration into NGESO 

systems, is beyond the scope of the current DRS project.  

In this report, we describe the proof-of-concept development, and report on its 

performance.  While productionisation was outside the scope of the current project, we 

discuss the steps we see as necessary for productionisation, and the main challenges that 

we foresee.  As the project has progressed, we have come across various opportunities 

for future innovation and improvement that, while beyond the scope of the current project, 

we recommend exploring in future work.  Overall, we hope that this report provides the 

reader with a clear sense of the value delivered by this project, as well as 

recommendations of future innovation ideas to explore. 
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Proof of Concept development  

PoC Aims and Use 

Our proof-of-concept implementation (DRS PoC) aims to give a set of dynamic reserve 

setting models that use available data to recommend a reserve level that meets a 1 in 365 

risk appetite2, and to do so in a way that is explainable.  

The data that is available to use as an input to the models depends on the timescales on 

which NGESO will run the DRS PoC.  These timescales are as follows: reserve 

recommendations covering 5am on the day of interest (D0) to 5am on the next day (D1) 

must be generated by 11am the day before (D-1).  We therefore take care to only use data 

sources that are available before that 11am D-1 deadline, so we do not use, for example, 

forecasts of wind speed that are generated only one hour ahead of the time of interest.  

The work needed to read in and process these data sources, getting them into a model-

ready format, can be seen in the Data Processing section below.   

We create reserve recommendations for each lead time from 1 to 24 hours.  To do this, we 

first calculate the total error (the quantity that the reserve recommendation is aiming to 

exceed for all but 1 in 365 settlement periods) for each of those lead times, taking the 

difference between the forecast at the relevant lead time and the actuals.  The details of 

the error calculations are set out in the Defining Errors section later in this report.   After 

calculating these errors, we use them to train 24 models, one for each lead time.  The 

approach to building these models is set out in the Model Building section.   

When NGESO run the DRS PoC, this will run each of the 24 models to produce reserve 

recommendations for each settlement period between 5am on D0 and 5am on D1 and will 

save them to an output file.  Along with these reserve recommendations, we also output 

an explainability report to give ENCC insight into what has led to the recommendation.  We 

describe the explainability report in more detail later in this report.  

Data Processing 

Before any models could be built, a large amount of data processing was required, 

providing a solid foundation for all future parts of the project. It became clear early into the 

 

2 On a settlement period basis.  This risk appetite can be changed.   
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project that this constituted a significant amount of work, due to both the amount of data 

that was required for the project, and also the range of different data quality issues that 

were observed as work progressed. The fundamental goal of the data processing work 

was to take the raw data files provided and insert the data they held into a MySQL 

database, addressing any issues with the data before insertion into the database. Details 

of the data held in the database are given in Table 1. 

Table 1: Details of data and errors held in the DRS database. Note that we are aware certain properties cannot be 
directly measured but are instead inferred. The term ‘measured’ is used for consistency across datasets. 

Data Details 

BMU details IDs & fuel types 

BMU level measurements and forecasts 

Forecast and actual values of (where 

appropriate) PN, NDZ, MEL, MIL, SEL, 

SIL, CL, MO & BOAs 

BMU ramping details 

Analysis identifying when BMUs are 

ramping to or from sync and desync 

events 

National grid trading details 

Trades made by the NGESO trading 

team that influence unit behaviours and 

cause deviations from forecasts 

National level measurements and 

forecasts 

Measured national demand, embedded 

wind, PV and interconnector flow 

values, as well as predictions of national 

demand from both PEF and BMRA. The 

PEF and BMRA forecasts were blended 

to create a hybrid demand forecast 

Weather measurements and forecasts 

Wind speeds, air temperatures, 

humidity, and various other descriptions 

of the weather at each time considered 

Weather station details IDs & locations 
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Wind BMU specific forecasts Forecast wind BMU generation values 

Computed Error Details 

Downwards reserve error 

Computed by combining BMU details, 

measurements, forecasts, ramping 

details, and trading data 

Interconnector error 

Computed by combining BMU details, 

measurements, forecasts, and trading 

data 

National demand error 
Computed by combining national level 

measurements and forecasts 

Reserve for response error 
Computed by combining national level 

measurements and forecasts 

Upwards reserve error 

Computed by combining BMU details, 

measurements, forecasts, ramping 

details, and trading data 

Wind unit error 

Computed by combining BMU 

measurements and wind specific BMU 

forecasts 

  

In addition to the data detailed in Table 1, we collate various features from the processed 

data and build a single table holding the features our models can be trained on. Doing this 

ensures the models produced can be re-trained on all, or subsets of, the data used in this 

project, with minimal additional effort in the future.  

In total, we processed data from January 2018 until September 2021. This alone 

presented considerable computational demand, as we held data at a 30-minute resolution. 

In addition, a substantial amount of work was required as data quality issues were 

identified during processing of the data, some of which required input (and in some cases 

further data sets) from NGESO to resolve. The specific data quality issues identified and 

resolved during this project are: 
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• Temporal discrepancies between data-points. Some were given at the level of 

settlement periods, others with date-time stamps, and checks were completed to 

ensure all datasets were correctly aligned in time. Similarly, some data was given 

with GMT timestamps, and others with local timestamps, meaning alignment was 

necessary.  

• Addressing missing values. Specifically for national demand forecasts, some time-

periods did not have any available forecasts at lead times above 18 hours. When 

this was identified, the longest lead time forecast was used to fill the missing values. 

• Interpolation of forecasts onto half-hour granularity for those given at lower 

resolutions 

• Mapping forecasts onto an integer grid of hourly lead-times. Some forecasts, for 

example those relating to weather, were not given at integer lead times, or at a one-

hour granularity. To ensure all data was available at the same resolution, in this 

case we carried the most recent forecast known to shorter lead times.  

• Refining the list of BMUs that contribute to error calculations. It became clear that 

determining what set of BMUs to consider in the URE, DRE, and wind error 

calculations was not a simple task, and there were several discussions between SI 

and NGESO before settling on a pre-defined list provided by NGESO. 

• Determining a national demand forecast to use for the times before the PEF 

forecasts were created 

• Identification of BMU fuel types when missing in raw data 

• Identification of data files that were missing in some data-dumps we received 

Further, additional processing steps were required to implement updates to various error 

calculations. These were: 

• Inclusion of NGESO trading data into error calculations, ensuring that when 

NGESO’s actions instructed units to deviate from their forecasts, they did not 

contribute to the errors. This required loading and processing of trading data, and 

incorporation of it into the error computation logic. 

• Exclusion of wind units that were subject to a BOA at a given time when computing 

wind unit errors.  

• Detection of periods of time when units were ramping from a sync event, or to a 

desync event, and inclusion of these in the URE & DRE logic. This was done by 

inspecting sequential data-points for units in time, which differs from NGESO’s 

existing approach that infers such behaviour without considering sequential 

information. 
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• Generating a hybrid national demand forecast that used PEF forecasts (when 

available) for lead times less than 4 hours, and BMRA data otherwise.  

While building this database, and resolving the data quality issues identified, took a 

significant amount of time, both the final database produced and what we learned from the 

data processing are highly valuable going forward. First, the database itself (which is part 

of the project deliverables) enables easy examination of the various errors, features, and 

unit contributions throughout the time-period studied. Additionally, further models can be 

built and evaluated over subsets of this time-period with minimal effort. Finally, having 

identified and worked with NGESO to resolve each of the data quality issues mentioned, 

future work involving the data sources can apply the knowledge we gained, spending less 

time manipulating and cleaning data, and more producing additional insight from the data. 

Defining errors 

Part of the data processing work described above involves computing various errors, and 

here we describe our extensions to NGESO’s existing error definitions, as well as showing 

how the errors combine to give a total error.  Our reserve recommendations are based on 

this total error: the models are trained such that the reserve recommendations produced 

are higher than the total error 99.7% of the time, i.e. for all but 1 in 365 settlement 

periods3.  Getting a reliable reserve recommendation, therefore, depends on calculation of 

an appropriate measure of total error.   

To get the total error, we combine several types of error: Upwards Reserve Error (URE) or 

Downwards Reserve Error (DRE) for non-wind-non-interconnector units, wind error, 

interconnector error, reserve for response error, and demand error, as is done in the 

approach currently used by NGESO (although we do not subtract off free headroom, and 

instead look at the whole total error.).   

For positive reserve, we want to cover cases when, due to forecast errors, we have either: 

• Less headroom from non-wind-non-interconnector units than forecast 

• Less generation/more demand from wind units and interconnectors than forecast 

• Higher national demand than forecast 

 

3 This risk appetite can be changed by NGESO as needed. 
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Our total positive reserve requirement is then be based on the 99.7th percentile of:  

 

For negative reserve, we want to cover cases when, due to forecast errors, we have 

either:  

• Less footroom from non-wind-non-interconnector units than forecast 

• More generation/less demand from wind units and interconnectors than forecast 

• Lower national demand than forecast 

For negative reserve, therefore, we use the (100-99.7)th percentile of:  

 

We calculate the errors for each lead time L and each settlement period of interest, 

allowing us to create reserve recommendations for each of those lead times and 

settlement periods.   

Our extended error definitions, the details of which can be seen in Appendix A, have built 

on those currently used by NGESO in the following ways:  

• We exclude unit, settlement period pairs where a trade has been initiated by 

NGESO, so that deliberate decisions to trade are not being counted as errors.  This 

mainly affects the interconnector error, but could also affect the URE/DRE and wind 

error if there are trades initiated by NGESO on those types of unit.  

• We extend the definition for URE to include demand-side and bidirectional units.   

• We take the definition for URE and adapt it to give a formulation of DRE (for each of 

generation-side, demand-side, and bidirectional units), which is needed for 

calculating negative reserve. 

With the data processing and error definitions providing a firm foundation to build on, we 

can progress to model building. 
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Model Building 

As the primary class of predictive model, we chose gradient boosted trees. Boosting uses 

ensembles of predictive models to assemble one powerful predictor from the sum of many 

smaller, weaker ones, trained to work together to capture different features within the data. 

Applying boosting to decision trees has been repeatedly shown to deliver best-in-class 

performance when modelling tabular, multi-source data as is the case here. Though this 

power comes at the expense of non-parametric black-box modelling, gradient boosted 

trees can be made more transparent through explainability techniques as we have 

deployed in this project. 

To build the models, we used the LightGBM framework. LightGBM has proven itself to be 

a significant competitor to the established favourite XGBoost, having similar performance 

while being more computationally efficient in training. It provides a number of 

hyperparameters to control the model structure, but not so much structural flexibility as to 

be overwhelming to fine-tune. It also has the advantage of natively supporting fitting to a 

given statistical quantile, giving further computational efficiency compared to other models 

where a custom loss function would need to be manually specified. 

As part of model building, for each model that makes up the DRS PoC, we employed two 

important processes: feature selection, and hyperparameter tuning. The combination of 

these meant we were able to balance bias and variance to yield models that perform well 

on unseen data. 

Feature selection involves determining the features of the data which provide the greatest 

predictive power. Simply selecting all available features can reduce model performance, 

especially through overfitting where the model is too heavily attuned to the precise data it 

has been trained on and therefore is not as accurate when used to make predictions using 

fresh data. To determine which features to add, we considered the correlations between a 

new feature and the residual difference of the target value and the current model 

prediction. The next feature trialled would then be selected based on the strength of this 

correlation and the simplicity of the feature. A simpler feature is more understandable to a 

human so these were favoured as were features which had types not yet present in the 

model (for example, wind/PV related features). Trialling a new feature involved training the 

model using cross-validation with the new feature added and comparing the resulting 

performance on the data not used for training to the model performance on the same data 

before this latest feature was added. A new feature was kept if it showed an improvement 

in model performance.  
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To find a good set of values for the hyperparameters of the model, we used a combination 

of automated and manual selection. The initial automated process involved passing the 

selected model features to a Tree-structured Parzen Estimator algorithm using the Python 

package Optuna. A search space of hyperparameter values is passed to this algorithm 

which then iteratively selects values for the hyperparameters and fits a new model using 

these hyperparameters. The hyperparameter selection for each iteration is guided by the 

performance of the model during previous iterations, making this more efficient than a 

simple grid search or Monte Carlo sampling approach. The manual process consisted of 

fine tuning hyperparameters related to when the model ceases improving its fit to the 

training data, further reducing the chances of overfitting. 

There are alternative model classes we could have adopted for this regression problem. 

One obvious class with similar flexibility to LightGBM, albeit an entirely different paradigm, 

is neural networks. Neural networks are more cumbersome to design and train, and their 

behaviour under extrapolation can be more unpredictable than that of gradient boosted 

trees. Nevertheless, to compare raw performance of neural networks against our chosen 

LightGBM approach, we give some case studies below for example lead times and 

quantiles. These rely on an auto-ML approach to tune the neural network architecture and 

a custom loss function for quantile loss instead of the usual mean squared error, achieving 

comparable performance but at an unjustifiable computational burden. 

Trading flexibility for control, other approaches could focus on linear regression models. 

These were used in the first, feasibility demonstration phase of the DRS project to provide 

a clean first pass when understanding the data and refining our approach. The significant 

nonlinear interactions inherent in the data available here mean that a powerful linear 

regression model would demand significant feature engineering to achieve performance 

comparable to strong non-parametric models. Therefore, we do not pursue such models 

beyond their use in the first phase of the DRS project. 

Explainability 

We understand that for the new dynamic reserve setting approach to be adopted for use 

by NGESO, the outputs of the models must be clear, explainable and understandable by 

control room engineers. To ensure this is the case, when our models are run, we produce 

an ‘explainability report’ alongside the reserve recommendations detailing the 

contributions of each feature to the final model output. As an example, this report might 

detail how many MWs of the output are due to the forecast wind speed, or the time of day. 
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The existing methodology to attribute a particular number of MWs of reserve requirement 

to a particular source is to first define some number of ‘pots’ (e.g.: wind, PV, regulating) 

and to place into each of these pots various amounts of reserve requirement. We aimed to 

improve upon this by removing the need to pre-define pots and instead to attribute a 

particular number of MWs of reserve requirement to each feature the model incorporates. 

We also do so in a model agnostic way, meaning if the reserve setting models were to 

change in the future, the explainability methodology we have devised remains valid. We 

achieve this by using a methodology called Shapley Additive Regression Values (SHAP)4. 

This is a game theoretic approach to explaining the output of a machine learning model, 

based on the values of the input features. 

Before giving an example of the use of SHAP, we first note a few terms that are required 

to understand the subsequent plots explaining the model outputs: 

• A ‘baseline model output’ that can be used as a reference value for 

explanations. This can be thought of as a surrogate for the average of the 

model outputs over the data it is trained on. In every plot of SHAP values 

explaining a prediction, the baseline value will be marked, with changes in 

the model output judged relative to this. 

• A linear decomposition of a model output. Suppose a model had features A 

and B. By linear decomposition of the output, we mean the output can be 

written as: 

Output = baseline + (Feature A’s contribution) + (Feature B’s contribution)  

Here, we breakdown the output of the model (that is a single numerical 

value) into the sum of contributions from each feature, and the baseline 

model output. In doing this, we can say for a single prediction, this output 

differs from the baseline by some amount of MWs, and we can inspect how 

many of these MWs are due to each individual feature in our model taking 

the specific value they do for the given input. Note that this does not mean 

our model is linear, rather that the SHAP values we compute from the model 

can be added to the baseline to reach the model output.  

 

4 Technical details of SHAP can be found in: S. M. Lundberg, S. Lee. (2017) “A unified approach to 
interpreting model predictions”. Advances in Neural Information Processing Systems 30 (NIPS 2017). 
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The most intuitive understanding of such an approach can be gained by inspecting one of 

the plots we generate and place in our explainability reports, shown in Figure 1. 

 

Figure 1: SHAP explanation plot for 2021-06-02, settlement period 38 

In Figure 1, we see the explanations SHAP provides for a single prediction the (4-hour 

lead time, 99.7% quantile, total positive reserve error) model generates. In this example, 

we have a baseline model output of 3553.201 MW. It is from this baseline that we judge 

how much each feature increases or decreases the model output in this example. 

Increases in model output are shown in red, whereas decreases are shown in blue. Each 

feature is listed along the y-axis of the graph, and the final model output, after including 

each feature’s contribution, is marked at 3994.836 MW. We would read such a plot as 

follows: 

• The most influential feature in this example is the embedded wind load factor, 

which takes a value of 0.303. This leads to an increase in the model output of 

472.59 MW compared to the baseline. 

• The second most influential feature in this example is time of day, which takes 

the value 18:30, and decreases the model output by 114.01 MW compared to 

the baseline. 
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• The third most influential feature in this example is the difference in mean wind 

speed forecasts in time (measuring the expected changes in wind speed), which 

takes the value -0.068, and increases the model output by 93.18 MW 

• The fourth most influential feature in this example is the standard deviation of 

wind speed forecasts (measuring the variability in the forecasts across the 

country) which takes the value 3 and increases the model output by 88.59 MW. 

• After, we see the next most influential features are the month, national demand 

(at a lagged time of 1 day), weekday, the differences in embedded PV load 

factor in time, and finally the bank holiday indicator. Note that for weekday, 0 

corresponds to Monday, 1 to Tuesday and so on. 

The explainability plots generated for any model output will always be ordered such that 

the most influential feature is at the top, the second below that and so on, with the least 

influential at the bottom. Since the model is non-linear, we may see significantly different 

orderings and contributions from other predictions we explain, however we can always use 

this breakdown to attribute how many MWs a particular feature contributes to the model 

output, given it takes the specified value.  

The final explainability report produced each time the models are run includes a table of 

the MW values of reserve to hold at each target time, a plot of contingency reserve at each 

target time, and one plot as shown in Figure 1 per prediction made. Contingency reserve is 

defined as the difference in reserve recommendations between some lead-time and the 

recommendations at a 4-hour lead time. We generate a plot of this for 4, 6, 12, 18 and 24 

hour lead times. Finally, recall that we make predictions for lead times from 1 to 24 hours 

and predict from 5am on some day to 4:30 on the next day. This means each lead time, 

time-point pair has an associated SHAP plot that explains contributions to the output from 

each feature. 

Value to NGESO: Proof of Concept 

performance 

In this section we discuss the performance of the dynamic reserve setting models. The 

models perform well compared to a reference constant model when evaluated on data not 

used to train either set of models. Further investigation is required to establish the correct 

quantiles to predict in order to match NGESO’s risk appetite. Comparison to historic 
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NGESO predictions looks similarly positive though with the strong caveat that the NGESO 

predictions were made against a different target to those considered in our work. A 

summary of the main improvements the DRS model5 offers over the existing NGESO 

approach are as follows: 

• The DRS model has fewer shortfalls in reserve. Actual reserve requirements 

exceeded the predictions made by the DRS model 0.43% of the time, compared to 

2.66% for the existing NGESO approach. 

• When the actual reserve requirement exceeded the predictions (a shortfall), the 

DRS model was closer to the true value than the existing approach. The average 

and maximum shortfalls for the DRS model were 397 MW and 1490 MW 

respectively. For the NGESO approach, these values were 774 MW and 4406 MW. 

• The performance of the DRS model appeared consistent across different subsets of 

time, whereas the existing approach experienced more shortfalls as years 

progressed from 2018 to 2021. 

• The DRS model offers a higher resolution of explainability than the existing 

approach, even though the DRS model is more complex. This is because the DRS 

model attributes a particular number of MWs to each input feature, whereas the 

existing approach relies on predefined ‘pots’ of reserve. 

Detailed comparisons between the DRS results and the historic NGESO approach are 

discussed further towards the end of this section, with details on how these comparisons 

were done and the caveats that should be considered when interpreting them. 

General performance of the DRS PoC 

Figure 2 shows predictions from the models targeting the 99% and 99.7% quantiles of 

positive reserve error against the actual positive reserve error for one week of data drawn 

from the test set. The sinusoidal nature of the predictions is due to the influence of time of 

day with deviations from this driven by the other features of the models. The features used 

in the DRS PoC models are listed in Appendix B: Model features. 

 

5 The 4-hour-lead-time, 99.7% quantile positive reserve model, which is the one most appropriate for 
comparison with the NGESO current approach. 
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Figure 2: Predictions vs actuals (blue circles) for positive reserve error with predictions targeting the 99% quantile 
(purple) and 99.7% quantile (black). 

To assess the general performance of the DRS PoC we compare predictions from the 

models to target actuals for a test set of data not used for training the models. To allow for 

comparison, we define a reference model as a constant estimate of reserve error. We 

discuss here the performance of our models against this reference. 

We use several aggregated metrics to assess the model performance: 

• Quantile loss – an appropriate measure of goodness of fit in this context, analogous 

to the use of root mean squared error for standard linear regression models.  

• Average prediction – the average prediction of the model. Decreases in this metric 

represent decreases in cost to hold reserve to meet this requirement. 

• Exceedance fraction – the fraction of times the target actual is more extreme than 

the model prediction. Decreases in this metric represent reduced occurrences of 

insufficient reserve. 

In the following analysis we focus on the model predictions for positive reserve at the 

99.7% quantile. Similar results were observed for the remaining quantiles (99% for positive 

reserve, and 1% and 0.3% for negative reserve) used to train models in this work. See 
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Appendix C for more details.  Comparisons to the reference model are averaged across 20 

randomised partitions of the data into training and test sets6. 

Figure 3 and Figure 4 respectively plot the quantile loss and average prediction of the 

proof-of-concept models and reference models for each lead time. Performance against 

these metrics is consistently better than the baseline at all lead times with greatest 

improvement over the reference models for longer lead times. 

 

Figure 3: Quantile loss across lead times for positive reserve predictions at the 99.7% quantile for the DRS PoC (purple) 

and reference model (dark grey). 

 

6 For each of the 20 models that we average over to get the results described, the model is trained only on 
the training set for that model, with the performance evaluation made on the test set for that model.  For 
another of the 20 models, data from the first model’s test set may appear in its training set, but individual 
models are never tested on data that they are also trained on.  
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Figure 4: Average model prediction across lead times for positive reserve predictions at the 99.7% quantile for the DRS 
PoC (purple) and reference model (dark grey). 

Figure 5 plots the fraction of settlement periods when the model prediction was exceeded 

by the true reserve error which are instances where the models are recommending a level 

of reserve which would have been insufficient. For a target quantile of 99.7% we expect 

this exceedance fraction to be around 0.3%. As shown in Figure 5, the models perform 

slightly worse than the reference models against this metric. However, the analysis shown 

later on in this report shows that the DRS PoC has a reduction in underholding when 

compared with the NGESO current approach.  Further work is needed by NGESO to 

calibrate the quantile used in the DRS PoC to their risk appetite, which is based on events 

- which can cover multiple settlement periods - rather than on the settlement period 

granularity used in the DRS PoC.  The DRS PoC has been developed in such a way that 

gives NGESO the flexibility to change the quantile to something other than the 99.7% that 

we have focussed on in this report. 
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Figure 5: Fraction of settlement periods when the true reserve error exceeded the model prediction across lead times for 
positive reserve predictions at the 99.7% quantile for the DRS PoC (purple) and reference model (dark grey). 

We have also performed comparison with an alternative choice of model where a neural 

network was constructed. Table 2 shows the performance of each type of model when 

predicting positive reserve error for one choice of partition of the data into training and test 

data. This table highlights two features of the model performance. The first is that there is 

a trade-off between the metrics. For example, the gradient boosting model outperforms the 

neural network model with regards to quantile loss at lead time 4 and quantile 99.7 but 

performs worse for the same lead time and quantile when measured against average 

prediction and exceedance percentage. The second observation is that performance is 

comparable between the two model types. We decided to proceed with the gradient 

boosting model approach as it requires far less computing resource to train and is more 

explicitly constructed than a neural network equivalent. 
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Comparison with historic NGESO approach 

A summary of the main conclusions drawn from comparing the existing NGESO approach 

to the DRS model7 are as follows. First, the DRS model had fewer instances where the 

model predictions fell below the actual reserve requirements, compared to the existing 

approach. Second, when predictions did fall below the actual reserve requirements, the 

DRS model was closer to the true requirement (both in terms of average and maximum 

shortfall) than the existing approach. Third, the performance of the existing approach 

appears to deteriorate as time progresses (from 2018 to 2021). This is not true for the 

DRS model. These conclusions must be considered in conjunction with the complexities 

that arose when comparing the two approaches and are detailed in the remainder of this 

section. 

A final way to assess the performance of our model is to compare the outputs, where 

possible, to the existing approach used by NGESO. We were only given results for positive 

reserve by NGESO, and only for underholding, so do not give any comment on negative 

reserve performance or overholding in this context. It should be noted from the outset that 

 

7 The 4-hour-lead-time, 99.7% quantile positive reserve model, which is the one most appropriate for 
comparison with the NGESO current approach. 

  Quantile loss Average prediction Exceedance % 

Lead 

time 
Quantile NN GB NN GB NN GB 

4 99.7 12.1 10.7 3855 3958 0.37 0.41 

4 99 31.6 31.0 3338 2929 0.95 1.30 

24 99.7 19.7 20.2 4868 5146 0.77 0.71 

24 99 52.9 55.6 4334 3958 1.25 1.56 

Table 2: Performance comparison between neural network (NN) models and gradient boosted (GB) models when 
predicting positive reserve error. 
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this comparison is not direct, as both the modelling approach and the target variable have 

changed. The inclusion of additional complexity in URE and other error terms means we 

cannot simply compare a prediction at a given time from the NGESO model with the DRS 

model and say which is better. Instead, we can repeat the analysis performed by NGESO 

on their existing approach for the DRS model and compare the behaviours we see.  

Throughout this section, the results for the NGESO approach are taken from materials 

provided to us by NGESO. The results for the DRS model are computed using a model for 

total positive reserve, trained for the 0.997 quantile. Results are only computed for data-

points in our test set. We also use the term shortfall to denote instances where a model’s 

prediction was below the actual required reserve value, and the size of a shortfall (in MWs) 

as the difference between the actual reserve required and the model prediction. 

The first comparison we make is to ask, what percentage of predictions made by each 

approach provide sufficient reserve when compared to the actual amount of reserve that 

was required? This is exactly the one minus the exceedance fraction as discussed 

previously in this report. This is shown in Figure 6. From this, we see that the existing 

approach recommends sufficient reserve for 97.34% of times, whereas the DRS model 

does so for 99.57% of times. Clearly, the DRS model will have fewer shortfalls in reserve 

as a result. 

 

Figure 6: Comparison of sufficient and insufficient reserve recommendations by the NGESO approach and DRS model 
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A second comparison to make is to question whether the models show variation in 

performance over different periods of time. This analysis is presented in Figure 7, from 

which we see the percentage shortfalls for the existing approach appear to increase as 

time progresses. This is not true for the DRS model, which also shows a lower percentage 

of shortfalls across all time-periods analysed. It must be noted that when training the 

model, we created a training set by randomly selecting 75% of days as ‘training days’ and 

the remaining 25% as ‘test days’. Therefore, the DRS model will have seen some data-

points that occur across the entire time range studied, whereas this is unlikely to be true 

for the NGESO approach. The main conclusion from this analysis is therefore that the 

DRS model does not show significant variability in performance across the different time-

periods shown in Figure 7.  

 

Figure 7: Comparison of sufficient and insufficient reserve recommendations by the NGESO approach and DRS model, 
split by GMT and BST time-periods across years. As in Figure 6, purple denotes sufficient reserve and graphite denotes 

insufficient. 

As well as breaking down performance into clock change periods, we can also consider for 

which days of the week our model experiences the highest number of shortfalls. This is 

done in Figure 8. We do not show the NGESO results, as exact values could not be read 

off the provided slides, however we note that the NGESO approach showed the most 

significant number of shortfalls on Sundays. In comparison, we see from Figure 8 that the 

DRS model experiences the highest number on Tuesdays and Thursdays, and in fact has 

the lowest number on Sundays. It should be noted that, since the number of shortfalls the 
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DRS model experiences is small, there may be some variability in these results if more 

test data was attained and the analysis repeated. 

 

Figure 8: Distribution of shortfalls across days of the week for the DRS model 

 

In the analysis provided to us by NGESO, there was an investigation of the size of 

shortfalls, that is the number of MWs the model prediction fell short of the actual reserve 

requirement, when the prediction was lower than the true requirement. Large shortfalls 

correspond to significant underprediction of the required amount of reserve. We compare 

the average and maximum values for shortfall sizes in Table 3. 

Table 3: Comparison of the size of shortfalls experienced for the NGESO approach and DRS model 

 Mean shortfall size 
(MW) 

Max shortfall size (MW) 

NGESO 744 4406 

DRS 397 1490 

 

It is clear from Table 3 that the DRS model has significantly smaller average and 

maximum shortfalls than the existing approach. The difference in average shortfall 
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between the two approaches is 347 MW, and the difference between the largest shortfalls 

observed is 2196 MW.  

While we have observed that there are both a smaller percentage of shortfalls for the DRS 

model compared to the existing approach, and these shortfalls are smaller in terms of 

MWs, we also verify that the DRS model is not simply recommending vastly larger reserve 

values to reach this performance. Analysis of the average prediction of the two 

approaches is given in Table 4, computed for the NGESO approach using historic 

predictions and positive errors provided to us during the project. 

Table 4: Comparison of average predictions for the NGESO approach and DRS model 

Data subset 
Average prediction (MW) 

DRS NGESO 

Overall 3546 3536 

Monday 3501 3478 

Tuesday 3564 3537 

Wednesday 3524 3466 

Thursday 3524 3613 

Friday 3560 3574 

Saturday 3689 3572 

Sunday 3482 3521 

 

We observe that the average predictions the DRS model and NGESO approach make are 

not significantly different in absolute or relative terms, meaning the gains observed 

throughout this section are not simply due to the DRS model outputting larger predictions. 

The analysis shared by NGESO highlighted 20 periods where the existing approach 

experienced the largest shortfall. Of these 20 periods, half were given in BST time periods, 

and half were given in GMT time periods. We found that 10 of these periods lay in our test 

dataset. Across these days, the existing approach experienced shortfalls of several 

thousand MWs, however we found that the DRS model only experienced 1 shortfall in this 

period, of 16 MWs. It must be noted however that, due to the changes in error definitions 

developed during this project, the ‘actual’ values in this case for the two approaches were 

significantly different. It is therefore appropriate for us to isolate what we find to be the 10 

days with the most severe shortfalls in the DRS work, and show these to understand how 

our model behaves in the extremes. Such analysis is shown in Figure 9.  
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Figure 9: The 10 largest shortfalls observed by the DRS model 

Inspecting Figure 9, we see that the 10th most extreme shortfall we observed from the 

DRS model was just above 600 MW, showing that that size of the extreme shortfalls the 

DRS model experiences are comparable to the average shortfall the existing approach 

experiences. Many of the time-points shown are also adjacent in time, showing a clear 

temporal dependence; alluding to the fact that there may be much to gain by considering 

very short-term (30 minute) reserve prediction. This is discussed further at the end of this 

report. 

Throughout this section, we have compared the DRS model to the existing approach used 

by NGESO and seen that the DRS model has both fewer shortfalls, smaller shortfalls (in 

terms of MWs) and does not recommend significantly larger reserve values. This must be 

considered in conjunction with the modifications made to the error definitions. However, 

these results do indicate that the overall achievement of the DRS project compared to the 

existing approach is to generate more reliable reserve recommendations, with smaller 

shortfalls while offering even more transparency in the model predictions than the existing 

method.  
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Recommendations 

In this section, we set out our recommendations both for directly building on the DRS PoC 

and for future innovation: using short-notice time series models, and an alternative 

approach to calculating URE.  

Productionisation 

In the DRS project, we have created a proof-of-concept implementation of a set of 

machine-learning-based dynamic reserve setting models.  For these models to be used in 

the control room, it needs to be productionised, to make it robust and appropriate for that 

use case.  We expect that the main steps involved in this productionisation are: 

• Building robust, production-ready data pipelines that bring data from existing 

NGESO databases like NED, process it to make it model-ready, and then store that 

processed data in a DRS-specific database.  This will involve not only moving from 

reading in csv files to connecting to existing NGESO databases (which we expect to 

be a significant challenge), but also creating code that is robust to data issues e.g. 

missing data.  

• Productionising, and automating where appropriate, the code needed to train and 

run the models.  We expect this to include automating the running of scripts to pull 

data from existing NGESO databases as well as putting appropriate systems in 

place to handle failures of those scripts – if the script failed because the data was 

unavailable, for example, we may wish to have it re-run at a later date.   

• Ensuring that the model outputs are accessible by the relevant NGESO systems, 

which we expect to be by creating an API. 

• Creating an interface that allows users to run the models, and to see the results. 

In addition to these steps to productionise what has been implemented in the DRS PoC, 

further work could be done to build on and enhance the approach:  

• Incorporate trading schedules into calculation of interconnector errors.  Currently, a 

unit is assumed to contribute zero to the error in a given settlement period if 

NGESO trade on it during that settlement period.  

• Dynamically find a BMU list, rather than using the predefined list (provided by 

NGESO) that the DRS PoC relies on for filtering. We believe this would be a 

challenging problem to solve.  
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• Explore (open) data sources beyond those provided for the DRS project, such as 

wind forecasts in Germany, to see whether they would be useful features for the 

models.   

Future innovation and improvement  

In this section, we set out two recommendations for future innovation: using short-

notice time series models, and an alternative approach to calculating URE.   

We fundamentally formulated the modelling challenge as a regression problem: to 

predict the forecast error at a settlement period, given a set of system variables. This is 

driven by the operational need to have reserve levels known with significant notice for a 

range of lead times. However, in preliminary investigation, we found that a very strong 

predictor for a settlement period’s forecast error is the error of the preceding period; in 

other words, the forecast error is highly correlated in time, and therefore so is the 

reserve required. This suggests that a two-tiered approach, with a long-notice forecast 

then corrected by a short-notice time series model, could add more predictive power. 

This would need careful system engineering to ensure the necessary live streaming 

data were available for the short-term forecasting, and that the short-term adjustments 

are compatible with the reduced flexibility in reserve holding at short notice. 

Another potential area for innovation is the approach to calculating URE.  The current 

URE formulation’s multiple cases and sharp jumps between those cases lead to 

sensitivity, with a small change in an input having a large effect on URE.  As well as 

this sensitivity, the current formulation makes assumptions that, given the variety of 

new types of units that are operating now and may operate in the future, might no 

longer be valid.  The current formulation assumes, for example, that units with an NDZ 

of 20 or less can be counted as potentially available to contribute in this settlement 

period.  With the variety of current and future types of units, we expect that some units 

might have a longer NDZ but be able to contribute meaningfully very quickly after that 

NDZ period, while others may take so long to ramp up that, even if their NDZ is less 

than 20, they wouldn’t make a meaningful contribution.  We recommend replacing this 

assumption with a more nuanced consideration of ramp rates. The current formulation 

also considers units individually without taking account of the properties of the wider 

system, such as group constraints, so could be overestimating the capacity that is 

actually available in the system.   
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URE is essentially the difference between the capacity expected to be available over a 

settlement period and the actual capacity available, and this could be calculated using 

the cost bands run mode that is currently in development (at the pre-release stage) as 

part of ongoing work on the Modernized Dispatch Algorithm (MDA).  This run mode of 

the MDA respects group constraints, power ranges and ramp limits, but disregards 

national generation requirement. Instead, the optimiser is first run with the objective to 

maximise generation (whilst satisfying the listed constraints). The optimiser is then run 

again with the objective to minimise generation. This then tells us how much headroom 

and footroom one has in the considered dispatch window. The run mode further allows 

users to specify limits on the bids and offers that will be accepted, revealing the 

headroom and footroom available subject to economic considerations. This is currently 

considered on the dispatch time-scale but may be suitable for adaptation to the 

problem of URE calculation.   

A simplified version of the problem solved by the cost bands run mode might also be 

sufficient for the purposes of reserve setting.  We could, for example, assume that 

group constraints are static and take a single, representative value for each constraint, 

rather than using the full dynamic data.  This would have the benefit of not relying on 

SORT data, which may be hard to access.  We suggest formulating a simplified 

approach and comparing the results it generates with the results produced using the 

cost bands run mode of the MDA, to determine whether the simplified version of the 

problem would be suitable for use in reserve setting.  

Conclusions 

In this report, we have set out the development of, the performance of, and the value 

brought by the DRS PoC.  Our machine learning models, driven by dynamic data inputs, 

perform well when compared with a constant reference model.  The 4-hour-lead-time, 

99.7% positive reserve model8 also gives fewer shortfalls, that are, both on average and 

when considering the maximum, smaller than the current approach.  In addition to this, we 

provide explainability in a future-proof way that doesn’t rely on the current approach’s pre-

defined pots of reserve.  Our enhanced definition of URE, while suffering from some of the 

same limitations as NGESO’s current definition, builds on and extends that current 

 

8 The model most appropriate for comparison with NGESO’s current approach. 
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definition. We also transfer knowledge from the URE definition to formulate a DRE 

definition, which then forms the basis of models for setting negative reserve.  Our 

database of processed data provides a solid foundation both for this work, and also for 

future work relying on the same data.  Having this database in place means that in that 

future work, less time would be needed for manipulating and cleaning data, leaving more 

time for producing additional insight from the data.  From data inputs all the way through to 

explainability outputs, the DRS PoC brings value.  

To make the most of the value that this DRS PoC brings, we recommend that NGESO 

take steps to productionise it.  In parallel with this, we recommend that NGESO explores 

short-notice time series models to enhance and the predictive power of the reserve setting 

models, as well as an alternative, innovative approach to calculating URE that will 

overcome the limitations of the current approach and provide a way of calculating upwards 

reserve error that is resilient to future changes in the electricity system.    

Appendix A: Detailed definitions of errors 

Upwards Reserve Error (URE)  

For non-wind, non-interconnector units, URE at lead time L is the difference in how much 

we can increase the unit’s generation (or decrease its demand) to between lead time L 

and real time.  For generation-side and bidirectional units that we expect to be providing 

non-zero generation (or that can start providing this is less than 20 minutes, so could 

contribute this settlement period), this difference is normally the Maximum Export Limit 

(MEL) at lead time L minus MEL at real time (below we present various special cases that 

differ from this).  For demand-side units that we expect to have non-zero demand, this 

difference is the Stable Import Limit (SIL) at lead time L minus SIL at real time.  To get the 

total URE, we sum the URE contribution from each unit.  
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There are various special cases, where the level we could increase a unit’s generation to 

(or decrease its demand to) is not equal to MEL (or SIL): 

• For generation side units where there is a step change downwards in MEL, there 

may be times while the unit is ramping down to its new value when metered output 

(MO) is higher than MEL.   

• For generation side units that are undergenerating by more than 10%, we assume 

that something has gone wrong, and the maximum they could provide at real time 

was MO.  This assumption was created with large coal plants in mind, and might 

not be so relevant to newer types of units, such as aggregators and batteries.  

• For generation side units that are undergenerating, but not by as much as 10%, we 

assume that the maximum they could provide at real time is reduced by the amount 

they were undergenerating by.  

• For demand side units where there is a step change in SIL, taking it further away 

from zero, there may be times while the unit is ramping to its new value when 

metered output is closer to zero than SIL.  

With these special cases in mind, the URE for non-wind, non-interconnector units is as 

follows:  

If (FPN_MW != 0 or CL != 0 or PN_L !=0 or (FPN_MW = 0 and NDZ <= 20)) and no trades 

initiated by NGESO for this unit and settlement period (at any lead time):  

If the unit is due to be either exporting or importing at a non-zero level, or could start up 

sufficiently quickly.  Note that we assume all variables can be evaluated, but in reality 

there may be missing values that impact the results.  Currently we use the default MySQL 

behaviour when missing values are encountered. 

If MEL_L > 0 or MEL_RT > 0 or MO > 0:  
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 If we expect, either at lead time L or at real time, that its generation could be set to 

some non-zero value.  This will cover generation-side and bidirectional units, which means 

that, for bidirectional units, only their MEL loss, and not their SIL loss is considered – 

future work could include an extension to also cover SIL loss.  Note that if a “broken meter” 

tag, identifying units where metering should be ignored so that they aren’t misidentified as 

e.g. bidirectional, could be included here if available, but has not been included in the DRS 

PoC. 

  If MO < SEL_RT and MO > 0: 

  If the unit is operating below SEL and is generating (so we exclude 

bidirectional units that could generate, but are currently importing). Note that in the DRS 

PoC, we compare with SEL_RT + 0.25 rather than SEL, and 0.25 rather than 0, to avoid 

numerical precision issues.  

   If RT_CCL[t] – RT_CCL[t-1] > epsilon (where epsilon is a small 

number, used in place of zero, to avoid numerical precision issues): 

   If the unit is ramping up from a sync event, we look only at 

underdelivery rather than also at MEL loss.  Note that we currently determine if a BMU is 

ramping from a sync event or to a desync even based on changes in its RT_CCL through 

time. If a BMU has RT_CCL at or above SEL, then we do not consider this to be ramping 

due to a sync event – when a BMU has reached SEL, we assume it is synchronised.  

There is an edge case where RT_CCL has reached SEL but MO lies below SEL. In this 

case, the DRS PoC assumes the unit’s contribution would be MEL_L – MAX(MO, 

MEL_RT), but this could be changed in future work, if desired. 

    RT_CCL – MO 

   Else if RT_CCL[t] – RT_CCL[t-1] < - epsilon: 

   If the unit is ramping down to a desync event, or is not ramping, then 

we look at MEL loss, taking into account the metered value taking time to ramp down 

following a MEL redeclaration.   

    MEL_L – MAX(MO, MEL_RT) 

   Else:  
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   The unit is operating between 0 and SEL, but isn’t ramping. 

    MEL_L – MAX(MO, MEL_RT) 

Else if RT_CCL > 0.1 and (RT_CCL – MO) / RT_CCL > 0.1: 

  If the unit is undergenerating by more than 10%.  Note that we compare 

RT_CCL with 0.1, rather than 0, to avoid numerical precision issues where RT_CCL 

should be zero, but is showing up as a very small nonzero number.  The issues will still 

occur, but around RT_CCL=0.1, which doesn’t appear as much in the data.  Note also that 

numerical precision may have an effect when the value of (RT_CCL – MO)/RT_CCL is 

extremely close to 0.1.  In the DRS PoC implementation, we use the default behaviour of 

MySQL.  

   MEL_L – MO 

  Else if RT_CCL > 0 and (RT_CCL – MO) > 0: 

  If it is undergenerating, but not by as much as 10% 

      MEL_L – (MEL_RT – (RT_CCL – MO)) 

  Else:  

  If it is a generation-side or bidirectional unit that isn’t undergenerating 

   MEL_L – MAX(MO, MEL_RT) 

 Else if FPN_MW < 0 or CL < 0:  

 If it’s a pure demand-side unit.  Note that considering the value of MIL could also 

determine this, although that has not been used in the DRS PoC.  

  If MO > SIL_RT: 

  If the (demand-side) unit is operating between 0 and SIL 

   If RT_DCCL[t] – RT_DCCL[t-1] < - epsilon 

   If the unit is ramping from a sync event, then include just the 

underdelivery part 
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    RT_DCCL – MO 

   Else if RT_DCCL[t] – RT_DCCL[t-1] > epsilon: 

   If the unit is ramping to a desync event 

     SIL_L – MAX(MO, SIL_RT) 

   Else:  

   If the unit is operating between SIL and 0, but isn’t ramping 

    SIL_L – MAX(MO, SIL_RT) 

  Else:  

  For demand-side units that have reached SIL 

   SIL_L – MAX(MO, SIL_RT) 

 Else:  

 All other cases, which will include pure demand-side units that can start up within 

20 minutes (which we want to exclude, because those demand-side units starting up 

wouldn’t help create headroom) 

  0 

Else:  

Units that we either don’t expect to be exporting/importing, or cannot start up within 20 

minutes, contribute nothing to the URE.  

0 

To get the total URE, we sum the URE for each unit.  The formulation above extends the 

formulation used in Phase 1 (which aimed to replicate the current formulation of URE) to 

include demand-side and bidirectional units.  

Definition of terms 
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• FPN_MW: the MW value of the Final Physical Notification for the specified 

settlement period 

• CL: Committed level 

• PN_L: the MW value of the Physical Notification at lead time L for the specified 

settlement period 

• NDZ: Notice to deviate from zero (minutes) 

• MEL_L: MW power Maximum Export Level at lead time L ahead of the specified 

settlement period 

• MEL_RT: MW power Maximum Export Level at real time for the specified 

settlement period 

• MO: Metered output 

• SEL_RT: the MW value of the Stable Export Level at real time, for the specified 

settlement period 

• RT_CCL: Real time capped committed level, minimum of MEL_RT and FPN_MW + 

BOA_MW.  When considering ramping, we look at RT_CCL for the specified 

settlement period, denoted by RT_CCL[t], and for the settlement period immediately 

before it, denoted by RT_CCL[t-1].  Where simply RT_CCL is written, this refers to 

the specified settlement period. 

• BOA_MW: MW value of the BOA for the specified settlement period 

• SIL_L: MW power Stable Import Level at lead time L ahead of the specified 

settlement period (this should be a value that is less than or equal to zero) 

• SIL_RT: MW power Stable Import Level at real time, for the specified settlement 

period (this should be a value that is less than or equal to zero) 

• RT_DCCL: Equivalent of RT_CCL, but looking at MIL rather than MEL. RT_DCCL = 

MAX(MIL_RT, FPN_MW + BOA_MW).  We’ve chosen to refer to it as RT_DCCL 

(downwards CCL), but is there a term that NGESO use for this?  As with RT_CCL, 

when considering ramping, we look at RT_DCCL for the specified settlement 

period, denoted by RT_DCCL[t], and for the settlement period immediately before it, 

denoted by RT_DCCL[t-1].  Where simply RT_DCCL is written, this refers to the 

specified settlement period. 

Downwards Reserve Error (DRE) 

Extending what was done in Phase 1, where we considered only URE for positive reserve, 

we can transfer this to negative reserve, and create a formulation for Downwards Reserve 

Error (DRE). For non-wind, non-interconnector units, we consider the difference in how 
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much we can decrease the unit’s generation (or increase its demand) to between lead time 

L and real time.  DRE is a mirrored version of URE, considering MIL and SEL rather than 

MEL and SIL.  As part of the DRE formulation, we define the mirrored version of CCL, 

which we denote DCCL (“downwards CCL”) and define as RT_DCCL = MAX(MIL_RT, 

FPN_MW + BOA_MW).  The DRE formulation is as follows:  

If (FPN_MW != 0 or CL != 0 or PN_L!=0 or (FPN_MW = 0 and NDZ <= 20)) and no trades 

initiated by NGESO for this unit and settlement period (at any lead time):  

If the unit is due to be either exporting or importing at a non-zero level, or could start up 

sufficiently quickly.  Note that, as with URE, in the DRS PoC, any missing data is handled 

in the MySQL default way. 

 If MIL_L < 0 or MIL_RT < 0 or MO < 0:  

 If we expect, either at lead time L or at real time, that its demand could be set to 

some non-zero value.  This will cover demand-side and bidirectional units, which means 

that, for bi-directional units, only their MIL loss, and not their SEL loss is considered – 

future work could include an extension to also cover SEL loss. 

  If MO > SIL_RT and MO < 0 :  

  If the unit is operating below SIL and is importing (so we exclude bidirectional 

units that could import, but are currently exporting) 

   If RT_DCCL[t] – RT_DCCL[t-1] < -epsilon 

   If the unit is ramping from a sync event.  Note that, as with URE, we 

currently determine if a BMU is ramping from a sync event or to a desync even based on 

changes in its RT_CCL through time. There is an edge case where RT_CCL has reached 

SIL but MO lies above SIL. In this case, the DRS PoC assumes the unit’s contribution 

would be MIL_L – MAX(MO, MIL_RT), but this could be changed in future work, if desired. 

    RT_DCCL – MO 

   Else if RT_DCCL[t] – RT_DCCL[t-1] > epsilon: 

   If the unit is ramping to a desync event 

    MIL_L – MIN(MO, MIL_RT) 
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   Else:  

   If the unit is operating between SIL and 0 but is not ramping 

    MIL_L – MIN(MO, MIL_RT) 

Else if RT_DCCL < 0 and (RT_DCCL – MO) / RT_DCCL > 0.1: 

  If the unit is underimporting by more than 10% 

   MIL_L – MO 

  Else if RT_DCCL < 0 and (RT_DCCL – MO) < 0: 

  If it is underimporting, but not by as much as 10% 

      MIL_L – (MIL_RT – (RT_DCCL – MO)) 

  Else:  

  If it is a demand-side or bidirectional unit that isn’t undergenerating 

   MIL_L – MIN(MO, MIL_RT) 

 Else if FPN_MW > 0 or CL > 0:  

 If it’s a pure generation-side unit 

  If MO < SEL_RT:  

  If it’s operating between 0 and SEL 

   If RT_CCL[t] – RT_CCL[t-1] > epsilon:  

   If it’s ramping up from a sync event 

    RT_CCL - MO 

   Else if RT_CCL[t] – RT_CCL[t-1] < -epsilon: 

   If it’s ramping down to a desync event  
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    SEL_L – MIN(MO, SEL_RT) 

   Else:  

   If it’s operating between 0 and SEL but not ramping 

    SEL_L – MIN(MO, SEL_RT) 

  Else:  

  If it is operating above SEL  

   SEL_L – MIN(MO, SEL_RT) 

 Else:  

 All other cases, which will include pure demand-side units that can start up within 

20 minutes (which we want to exclude, because those demand-side units starting up 

wouldn’t help create headroom) 

  0 

Else:  

Units that we either don’t expect to be exporting/importing, or cannot start up within 20 

minutes, contribute nothing to the URE.  

0 

To get the total DRE, we sum the DRE for each unit. 

Definition of terms 

• MIL_L: MW power Maximum Import Level at lead time L ahead of the specified 

settlement period (this should be a number that is less than or equal to zero) 

• MIL_RT: MW power Maximum Import Level at real time for the specified settlement 

period (this should be a number that is less than or equal to zero) 

• SEL_L: MW power Stable Export Level at lead time L ahead of the specified 

settlement period  
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Other types of error 

Wind error 

For wind units, we take the error to be the difference between the forecast (FOL) wind and 

the metered output, unless there is an active BOA (in that case, we set the error to be 

zero, since we don’t want actions initiated by NGESO to be counted as part of the error).  

We sum the contribution from each unit to give the total wind error.  

Interconnector error 

For interconnectors, we take the difference between the PN at lead time L and the final 

PN.  Following discussions with NGESO, we use the final PN rather than the metered 

output because, for interconnectors, metered output varies considerably depending on 

where it along the interconnector it is measured.  As with the wind, we want to exclude 

from this error calculation any cases where actions have been initiated by NGESO.  To do 

this, we use trading data, excluding units where a trade has been initiated by NGESO for 

the settlement period of interest (at any lead time). We sum the contribution from each unit 

to give the total interconnector error. 

Reserve for response error 

For lead times of up to and including 4 hours, we calculate the reserve for response error 

using the expression provided to us by NGESO:  

((1260 - (0.01 * national demand forecast at lead time L) - 500) / 0.68 / 0.6) - ((1260 - (0.01 

* actual national demand) - 500) / 0.68 / 0.6). 

Demand error 

For the demand error, we simply take the difference between the actual national demand 

and the national demand forecast with a lead time L.   
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Appendix B: Model features 

Here we list the data features used to construct the DRS PoC models. As part of the 

model construction process, features of the following types were considered: 

• Temporal (e.g., time of day, day of week) 

• Weather (e.g. wind speed, solar radiance) 

• National demand 

• Embedded wind and PV load factors 

• Interconnector flows 

with multiple mutations of these base features considered for each including lagging and 

differencing across settlement periods, days and weeks. Only features which improved the 

model performance were retained in the final PoC models. 

For positive reserve error the features used for the PoC models were: 

• Time of day 

• Month of year 

• Day of week 

• Bank holiday indicator 

• National demand lagged by 1 day 

• Embedded wind load factor 

• Embedded PV load factor differenced across consecutive settlement periods 

• Standard deviation across weather stations of the forecast mean wind speed 

• Mean across weather stations of the forecast mean wind speed differenced across 

consecutive settlement periods 

For negative reserve error the features used for the PoC models were: 

• Time of day 

• Month of year 

• Day of week 

• Bank holiday indicator 

• Embedded wind load factor 

• Embedded wind load factor lagged by 1 day 



P20-050 Smith Institute - Commercial in confidence March 31, 2022 

43 

• Embedded PV load factor  

Appendix C: Further performance 

comparison 

Here we show model performance for the models targeting positive reserve error at the 

99% quantile and negative reserve error at the 1% and 0.3% quantiles. The results are 

similar to those shown above for the 99.7% quantile for positive reserve error. 

Figure 10, Figure 11 and Figure 12 plot the quantile loss of the proof-of-concept models 

and reference models for each lead time for the 99%, 1% and 0.3% target quantiles 

respectively. As seen for the predictions of the 99.7% quantile, the DRS PoC models 

perform better than the reference models, especially at long lead times. 

 

Figure 10: Quantile loss across lead times for positive reserve predictions at the 99% quantile for the DRS PoC models 
(purple) and reference model (dark grey). 
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Figure 11: Quantile loss across lead times for negative reserve predictions at the 1% quantile for the DRS PoC (purple) 
and reference model (dark grey). 

 

Figure 12: Quantile loss across lead times for negative reserve predictions at the 0.3% quantile for the DRS PoC (purple) 
and reference model (dark grey). 
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Figure 13, Figure 14 and Figure 15 plot the average model prediction of the proof-of-

concept models and reference models for each lead time for the 99%, 1% and 0.3% target 

quantiles respectively. Again, we see that the proof-of-concept models perform better than 

the reference models, especially at long lead times. 

 

 

Figure 13: Average model prediction across lead times for positive reserve predictions at the 99% quantile for the DRS 
PoC (purple) and reference reference model (dark grey). 
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Figure 14: Average model prediction across lead times for negative reserve predictions at the 1% quantile for the DRS 
PoC (purple) and reference model (dark grey). 

 

Figure 15: Average model prediction across lead times for negative reserve predictions at the 0.3% quantile for the DRS 
PoC (purple) and reference model (dark grey). 
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As was seen for the 99.7% positive reserve predictions, the exceedance fraction for the 

remaining three quantiles is higher for the DRS PoC models than for the reference models. 

Figure 16, Figure 17 and Figure 18 plot the fraction of settlement periods when the model 

prediction was exceeded by the true reserve error for target quantiles of 99%, 1% and 

0.3% respectively. These are instances where the models are recommending a level of 

reserve which would have been insufficient. Again, this higher exceedance rate was 

deemed acceptable since it remains unclear what the level of exceedance should be to 

match NGESO’s risk appetite for reserve setting. 

 

Figure 16: Fraction of settlement periods when the true reserve error exceeded the model prediction across lead times 
for positive reserve predictions at the 99.7% quantile for the DRS PoC (purple) and reference model (dark grey). 
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Figure 17: Fraction of settlement periods when the true reserve error exceeded the model prediction across lead times 
for negative reserve predictions at the 1% quantile for the DRS PoC (purple) and reference model (dark grey). 

 

Figure 18: Fraction of settlement periods when the true reserve error exceeded the model prediction across lead times 
for negative reserve predictions at the 0.3% quantile for the DRS PoC (purple) and reference model (dark grey). 

 


