

Fractal Flow – Webinar

Frazer-Nash Consultancy

May 2024

Future Energy Scenarios

- Achieving Net Zero by 2050 [1] requires integrating more Distributed Energy Resources (DERs) [2], challenging traditional grid operations.
- ▶ ESO and DNOs need better visibility of power flows to maintain stability and security.
- Increased DERs and active networks complicate this due to limited data visibility and sharing.
- Centralising data and creating a shared platform with analytics is essential for optimal DER management and informed investment decisions, supporting the transition to a Distribution System Operator (DSO).

Figure ES.22: Distribution connection generation [2]

[1] Department for Energy Security and Net Zero and Department for Business Energy & Industrial Strategy, 'Net Zero Strategy: Build Back Greener', www.gov.uk/government/publications/net-zero-strategy

[2] NGESO, 2023, 'Future Energy Scenarios', https://www.nationalgrideso.com/document/283101/download, pg. 142

What is Fractal Flow?

What is Fractal Flow?

Use Cases

DNO Use Case 1: Network Visibility

EPIC: As a DNO Member, I want to be able to view the assets and connections on my network from the GSP-level down, so that I have a better understanding of supply and demand as well as constraints on my network.

DNO Use Case 2: Future Flexibility Services

EPIC: As a DNO Member, I want to have the infrastructure in place to support a system operator model and provide NGESO with the information they need for real-time control, so that I can optimise operations on my network and meet future grid requirements.

NGESO Use Case 1: Real-time Network Monitoring and Control

EPIC: As an NGESO Member, I want to have access to demand and availability of services at the GSP-level, so that I can make real-time control decisions within a specific region of the network.

NGESO Use Case 2: Dynamic Data Exchange for Balancing Services

EPIC: As an NGESO Real-Time Operator, I want to have a 30-minute resolution of demand and service availability information at the GSP-level, so that I can coordinate and maintain system stability.

NGESO Use Case 3:
Anticipating Future Trends
and Consumer Behaviour

EPIC: As an NGESO Real-Time Operator, I want to view future tariff trends and smart meter data, so that I can anticipate consumer behaviour and market dynamics and the corresponding implications on the network in real-time.

How are we going to solve the problem?

What did we do at Discovery?

DNO Use Case 1: Network Visibility - MUST (1)

EPIC: As a DNO Member, I want to be able to view the assets and connections on my network from the GSP-level down, so that I have a better understanding of supply and demand as well as

ID	User Story	A	cceptance Criteria	Priority	
	As a DNO Member, I want legacy assets to be included in Fractal Flow, so that I have a complete view of my network.	1.	A graph network that includes legacy assets as nodes and edges.	MUST	
	As a DNO Member, I want visibility of the assets and power flow data across the network, so that I can assess supply and demand across the network and identify constraints.	1.	Full network visibility OT data available within operation timescales.	MUST	4
	As a DNO Member, I want Fractal Flow to be integrated into the current systems and processes that I use for effective BaU, so that it aligns with existing initiatives.	1.	The Fractal Flow tool is deployed and integrated into DNO's existing system and environment for the required users. Fractal Flow can be used by the required users for BaU tasks.	MUST	
	As a DNO Member, I want to identify and fill gaps in the datasets, so that I can identify and resolve missing information and conflicts in the data.	1.		Data Analytics and ML for DN Visibility	
	As a DNO Member, I want to know the power flow direction below the 'primary'	1.	Visibility Powerflow di		

O Use Case 1: Network

FRAZER-NASH

al	Data Analytics and ML	Benefit			
st	 Infer the direction of power flow at nodes below the primary substation network level. This will leverage the graph to solve local- neighbourhood power flow problems [ML1, ML2, ML7, ML9]. 	Improves network visibility for assets that have limited data or sensor availability, and speed of local calculation on a large network with real-time power flow data.			
	 Identify constrained edges in the graph and forecast constraint clusters [ML1, ML2, ML7, ML9]. 	 Improves decision making and forecasting of supply and demand. Availability status would be metadata on a node allowing route finding problems to resolve outages or maintenance activities where a particular distribution or transmission asset is not available. 			
	Identify and fill gaps in the datasets. Identify bad data [ML3].	Addresses missing data, data conflicts, and bad data. Allows querying of nodes for real-time and historical statuses.			
	Classify nodes to identify those which have generators attached [ML4, ML8, ML9].	Improves network visibility to understand sources of power flow error.			
	Cluster nodes by characteristics [ML4, ML9].	Improves understanding of types of nodes and trends in node groups. Adde constitute forecast on expected behaviour of clustered nodes. Adde constitute forecast on expected behaviour of clustered nodes.			

As a DNO Member, I want to be able to interrogate assets at each level of the As a DNO Member, I want to be able to interrogate assets at each level of the
network (GSP, BSP, primary, etc.), so that I can identify asset characteristics and
here is the control of the second of the leftective hist.

view real-time and historic power flow data.

Benefits of Fractal Flow

Fractal Flow provides a range of benefits, those that we have identified are:

- 1. Balancing mechanism cost saving: £283m per annum saving (1st percentile)
- 2. Decreased carbon dioxide emissions: **1.07 megatons per annum** saving (1st percentile)
- 3. Ancillary services cost saving
- 4. Increased system security
- 5. Improved DNO investment decisions
- 6. Reduction in conservatism in new connections

How has our thinking evolved and how this affects future activities

Future Plan

Discovery

Feasibility Assessment

Core Requirements Capture

Cost Benefit Analysis

Technology Roadmap

Gap Analysis

Identify ML Approaches

Alpha

Develop Graph Network

Develop and Demonstrate ML Analytics for BM Constraint Scenarios

Use Static Data

Investigate Network/Solution Architecture

Develop External Data Sharing Requirements

Beta

Develop Network Solution Architecture

Integrate Analytics Engine & Data Streams

Trial Data Live Exchange

Trial ML Live Analytics

Develop Enhanced Analytics Capabilities

BaU

Deploy Fractal Flow

Future Functionality Planning

