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Executive Summary 
This report develops a statistical approach to derive a conservative estimate for the value of the costs that could be 

avoided through improvements in the knowledge that underpins GB whole energy network resilience investments. 

The Scenarios for Extreme Events Strategic Innovation Fund project will develop an energy systems model and 

resilience metrics to improve understanding of whole-energy system resilience, thereby enabling better identification 

of vulnerabilities and more effective resilience investment.  The model will span both the electricity and gas networks 

and will capture the linkages between these and other elements of essential UK infrastructure to allow insights into 

aspects of whole system vulnerability that would be missed through traditional siloed approaches to modelling energy 

system resilience, which typically only consider each system in isolation. 

The benefits of improved whole energy system resilience result from the possibility of avoiding or mitigating the 

significant costs incurred when large-scale disruptive events occur.  Given the breadth of possible impacts, it would be 

impossible to comprehensively estimate the future savings that would result from preventing such an event from 

occurring.  Rather than tackling the whole evaluation, here we develop a model that views the resilience investment 

as a mechanism to reduce the frequency and severity of large electricity outage events. From this we are able 

estimate the portion of the total benefit that derives from reducing the number of customers who suffer electricity 

disconnections. The estimates should be regarded as highly conservative, particularly in the case of the costs 

associated with the very largest events. 

Our analysis is based on over 23 years of distribution system fault data for Scotland, with results scaled to give cost 

savings for the whole UK.  The data is used to derive statistical parameters that allow the simulation of current 

patterns of fault occurrence and numbers of customer disconnections.  This forms the counterfactual, baseline case.  

These parameters are then modified in a variety of scenarios to reduce both the number of events that occur and the 

likelihood that an event will be severe.  Comparison of outage numbers between the counterfactual and scenario 

cases allows the benefit of a more resilient system to be estimated. The value of a prevented or less severe outage is 

calculated through applying assumptions around the unmet demand and the value of lost load.  Savings are 

aggregated over a 25-year period, with future savings discounted at the social discount rate of 3.5%.   

Using this approach, we estimate that the outputs from the Scenarios for Extreme Events project could provide cost 

savings due to reductions in customer disconnections in the order of £200m - £400m across the UK over 25 years. 

Analysis of the Scottish fault data indicates that, in common with other similar international data, the severity of 

outage events follows a power law distribution.  This leads to a small but finite probability of a random event bringing 

unexpectedly large consequences.  A review of literature reveals that such events are typically found to result from 

faults cascading across power systems.  This behaviour has been linked to properties of networked systems rather 

than the reliability or resilience of its component parts, which suggests that the most effective measures for avoiding 

such very large events may not be ‘traditional’ resilience measures that aim to cut failure rates, but rather strategies 

aimed at lowering cascade risks. 

The statistical model developed here supports this.  Results indicate that, for power law parameters derived from the 

Scottish fault data, improving everyday reliability and resilience by reducing the frequency of outage events gives no 

protection against the occurrence of a very large event. Suggested interventions from the literature include: 

 Prioritising fault recovery times to reduce the length of time for which the system is under stress. 

 Developing ‘fire breaks’ within and between networks (e.g. Strategically positioned battery storage) that 

could slow or prevent cascade events.  

If the whole energy system model being developed as part of this project can shed light on how the energy networks 

can build resilience against cascading failures, then its potential value through avoided costs could be very large.
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1 Introduction 
The Scenarios for Extreme Events Strategic Innovation Fund project sets out to better understand how whole-energy 

system resilience can be impacted by extreme events, thereby enabling better identification of vulnerabilities, and 

informing future investment planning decisions.  The improved understanding will result from the development of a 

model and resilience metrics that span electricity and gas networks, capturing the key linkages between these systems 

and other elements of essential UK infrastructure.  These will provide insight into aspects of whole system 

vulnerability that would be missed through traditional siloed approaches to energy system resilience, which typically 

only considers each system in isolation. 

This report describes the outcomes of Work Package 5, which estimates the potential benefits of developing such a 

model, investigating the potential savings through avoided costs that could be realised from making better informed 

investment decisions, and thereby reducing the size and impact of largescale energy system outage events.  

The approach to estimating benefits is based on applying analysis methods from the literature to a dataset of 

historical Scottish distribution network faults.  The statistical parameters derived from this are then used to drive a 

series of Monte Carlo simulations of fault occurrence over a 25-year period.  The simulations are conducted based on 

both current statistical parameters, and altered parameters that assume the implementation of enhanced resilience 

measures.  In line with the Scottish dataset, the output from the Monte Carlo simulation is a change in the number of 

outages experienced by customers.  Further assumptions map this to a monetary value for reduced unmet demand.  

The values for Scotland are extrapolated to give a value for avoided costs for the whole UK.  This process is 

summarised in Figure 1. 

 

Figure 1: A summary of the approach to estimating the benefits from improved resilience. 

The report covers the following areas: 

 The development of a benefits map that qualitatively charts the cascade of benefits that result from improving the 

resilience of key infrastructure (Section 2). 

 A review of the literature that analyses the occurrence statistics for extreme energy network events (3). 

 Statistical analysis of the Scottish electricity distribution fault data (Section 4). 

 A description of the Monte Carlo benefits model and presentation of resulting estimates of project benefits 

(Section 5). 

 Conclusions, discussion of results and suggestions for further work (Section 6). 
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2 Benefits mapping 
The model and approach under development within this project has the potential to deliver considerable benefit to 

the UK through improvements in the resilience of national infrastructure, and the more efficient allocation of the 

resilience-building budget across several critical service industries.  This is captured in Figure 2.  The CBA valuation 

presented here does not attempt to capture this full cascade of benefits.  As indicated, the metrics of reduction in 

electricity customer minutes lost (CML) and electricity customer supply interruptions are used to estimate a portion of 

the possible benefits.  These are converted into monetary benefits through applying a fixed value of lost load (VoLL) 

conversion, and the resulting benefits captured are unlikely to reflect the full costs of a largescale supply interruption 

[1]. 

 

Figure 2: Benefits map illustrating the avoided costs that could result from the successful implementation of the 
extreme event modelling.  The benefits model here seeks only to monetise the benefits obtained through reduction of 

the number of customer interruptions and customer minutes lost. 
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3 Literature on the statistics of extreme power outage 

events 
A number of authors have collected and analysed data on large electricity system power outages. The following 

section presents a review of publications that examine and rationalise the statistics of these events, and some of the 

approaches to reducing the likelihood of occurrence.   

Stankovski et al. [2], use both assembled data on severe blackout events across Europe and an Italian national dataset 

of transmission system events to identify cascading failure events. They define these as a series of sequential failures 

resulting from complex system interactions between components and/or human operators. The data is processed to 

produce plots of exceedance probability versus event size (demand not met) on logarithmic axes.  These are observed 

to exhibit the straight-line behaviour characteristic of a power law process.  Their detailed analysis identifies that: 

 Cascade events are mostly commonly triggered by weather events. 

 With sufficient data, it may be possible to spot the conditions that precede a cascade and potentially 

intervene to prevent it. 

 Recovering failed assets within 13 hours could halve the level of unmet demand experienced within 

power systems. 

As a probability distribution, the power law has been found to provide a way to model the occurrence of a wide range 

of natural phenomena, with its properties allowing it to inherently generate black swan behaviour, i.e. low probability 

high impact events [3]. Figure 3, taken from Hines et al. [4], shows an example of power law behaviour relating the 

size of an outage, S, (in terms of the loss of power), to the likelihood that a given outage is larger than S.  The 

relationship is observed in data on large black outs in North America between 1984 and 2006.1 

 

 

Figure 3: Probability that a large blackout will interrupt service by S or more MW. From [4].  The data is scaled to 
account for increases in whole system demand over the period, with power demand in 2000 acting as the baseline 

year. 

Hines et al. [4] provide a rationale for the applicability of the power law to large electrical blackouts, noting that 

network faults do not occur independently of one another: a system in which one fault has already occurred is more 

likely to suffer additional failures through the increased stress placed on the remainder of the network.  This exposes 

the system to the risk of cascading failures.  In addition, Dobson et al. [5] suggest that there are aspects of the way in 

which power systems are designed and operated that are key to understanding the emergence of a power law 

 
1 Further examples of this type of analysis may be found in the following references: [15], [24] and [23]. 
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relationship.  They point to economic pressures to operate power systems close to their maximum capacity, increases 

in the loads carried by the system and engineering responses to reliability and resilience as factors that combine to 

produce power law statistics. 

 

In the UK, extreme wind speeds have the most significant impact on the electricity network [2, 6, 7], with climate 

change expected to produce more frequent occurrence of such destructive weather events [8, 9].   Additionally, the 

move to electrify an increased proportion of our energy needs in pursuit of net zero goals will dramatically increase 

the volumes of power transmitted [10].  Both of these factors point to a reinforcing of the mechanisms that generate 

power law statistics.   

 

The literature contains insights into interventions that could lower the risk of cascading power system failures:  

  

 Reducing recovery times following failure.  This is mentioned by a range of authors (in addition to Stankovski et al. 

[2], mentioned above) as a way to mitigate some of the risk of large-scale outage (e.g. [11] [7] [12]) as it cuts the 

time during which the system is operating under increased stress. 

 Adding components to the system with the aim of ‘buying time’ and reducing the vulnerability of portions of 

networks that are downstream of faults.  For example, a number of authors (e.g.  [11, 13, 8]) highlight the 

potential role that battery energy storage systems could play in building energy system resilience and reducing the 

risks of large, cascading failure events. 
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4 Analysis of Scottish distribution network fault data 
The National Fault and Interruption Reporting System (NaFIRS) maintains statistical information on faults and 

interruptions for electricity DNOs in the UK.  While the data held on NaFIRS is not generally publicly accessible, SSEN 

Distribution publishes the data that it uploads [14].  The data comprises a list of faults and outages recorded between 

April 2001 and August 2023, the cause of the outage, the number of customer disconnections and the number of CML.  

The following section describes the processing and analysis of this data so that it may be used to derive statistics that 

will allow an estimate of the occurrence and severity of large power blackout events within the SSEN region. 

The data considers each fault separately, and therefore does not make links between different faults associated with 

the same cause, for example, a large weather event.  To account for this in a simple manner, the outages associated 

with faults occurring on the same day have been aggregated.   

Section 4.1 analyses the frequency and occurrence of historical fault events and Section 4.2 covers the fault recovery 

times.  In Section 4.3 we explain the assumptions and data sources that are used to extrapolate to UK-wide outage 

estimates. 

4.1 Outage frequency and severity 

Table 1 presents a summary of the occurrence, length and CML for outages above given thresholds of numbers of 

customers disconnected in a day. 

Table 1: Summary of SSEN NaFIRS data [14], with aggregated daily outages.  Days with > 10,000 affected customers 
are taken as the threshold for the power law analysis. 

Customers affected 
in a day 

(S) 

Number of days in 
sample with >S 

customers affected 

Average number of 
days per year with > 

S customers 
affected 

Average outage 
time per affected 

customer 

Average CML (1000) 
per day with > S 

affected customers 

1 7738 330.2 94 256 

2000 1704 72.7 89 940 

4000 555 23.7 121 2466 

6000 292 12.5 155 4322 

8000 176 7.5 194 6722 

10000 129 5.5 225 8816 

12000 96 4.1 249 11276 

 

Adopting the approach used in the literature reviewed above (e.g. [15, 4, 2]) and exemplified in Figure 3, we plot the 

probability that daily outages impact more than S customers, against the number of customers affected, on 

logarithmic axes.  This is shown in Figure 4.  For days with a total of more than 10,000 customer disconnections (S > 

10,000), this results in a power law relationship, with coefficient α = 1.7 and R2 coefficient of 0.998.  The expected 

annual number of high disconnection days, according to this definition, is found to be 5.5. 
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Figure 4: Exceedance distribution for the number of daily customer interruptions in Scotland between 2000 and 2023.  
The negative of the exponent in the power law line-of-best-fit gives the value of the alpha parameter used in later 

statistical modelling. 

4.2 Fault recovery times and unmet demand 

Data on the length of outage that results from individual faults (prior to aggregation into per-day customer 

disconnections) shows that the large outages are dealt with more quickly than the small ones but, within the category 

of ‘large’ outages, there is no correlation with size.  This is consistent with findings reported in the literature [6].  

However, examining the daily aggregated data (Figure 5), it is found that faults take longer to clear on days with many 

customer disconnections.  For days with > 10,000 outages, the average fault duration is 225 minutes.  As a 

simplification, this single value is used in the analysis.  It will lead to an underestimation of the number of CML in very 

large events. 

 

 

Figure 5: Plot showing the mean recovery time for daily events of size S (dark blue circles, left hand y-axis), together 
with the number of events in the dataset that were of that size (light blue triangles, right hand y-axis – note the log 

scale) 
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The data in Table 2 was used to estimate the unmet demand resulting from CML, by using an assumed energy 

consumption across both domestic and non-domestic meters of 8.21 MWh per year. 

Table 2: Data sources and assumptions for calculating the average energy consumption per electricity meter in 
Scotland. 

Quantity Unit Notes 

Total Annual demand in Scotland 22.71 TWh [16] 

Number of domestic meters in Scotland 2.55 Million 
Assumed equal to the number of 
households and dwellings [17] 

# domestic and non-domestic meters in 
Scotland 

2.765 Million 
Estimated by scaling from total number of 
domestic [18] and non-domestic [19] 
meters in England. 

Average demand per meter 8.21 MWh/year Annual demand / # meters 

 

4.3 Value of unmet demand and extrapolation to the UK 

The study assumes a Value of Lost Load (VoLL) of £6,000 per MWh [20].   

The values for the impacts of extreme events within the SSEN region are extended to the whole UK via the following 

assumptions: 

 ~26.9 million electricity meters in England (comprising ~24.8 million domestic [18] and ~2.1 million non-

domestic [19] electricity meters). 

 English electricity consumption comprises 81.1% of UK consumption [21], assuming that meter numbers 

scale with overall demand, this implies ~ 33.2 million UK electricity meters. 

 ~800,000 electricity meters within the SSEN region2 therefore the SSEN region contains ~ 2.4% of the 

UK’s electricity meters. 

 Assuming that outage statistics are uniform across the UK, multiplying the SSEN benefits by a factor of 

41.5 will give an estimate of UK-wide benefits from improvements in resilience. 

 
2 Information from ESO 
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5 Benefits Modelling: Approach and Results 
This section describes the approach to modelling the benefits of the extreme events energy system model, expanding 

on the basic outline from Figure 1.   

Figure 2 gave a non-exhaustive list of the areas where large-scale outages bring economic, social and environmental 

costs: costs that might be reduced if the whole system could be made more resilient to the events that cause the 

outages. The monetised benefit assessment presented here focusses on the electricity system only: this enables an 

analysis to be performed on the basis of UK data, backed by credible peer-reviewed publications that follow the same 

methodology.  The resulting estimate of potential avoided costs will (potentially greatly) underestimate the full 

potential costs of a large event that spans multiple networks. 

The route to monetising the benefits is by estimating the reduction in customer outages that will result from: 

 A decrease in the number of outages that occur. 

 A reduction in the likelihood that an outage is severe – i.e. an increase in power law parameter α 

 Both of the above in combination. 

Section 3 provided justification for adopting a power law distribution to describe the occurrence and size of large 

outages in Scotland.  We use a Monte Carlo model to assess how altering both the frequency of occurrence of 

extreme outage events and changing the power law α-parameter (to impact the probability that the next large event 

will be above a certain size) alters the number of customer disconnections. 

 

The modelling is based around the analysis of SSEN data presented in Section 4.  Days with over 10,000 customer 

disconnections are assumed to occur randomly, following a Poisson distribution.  Given that an event has occurred, its 

severity is selected from a power law distribution.  The simulation covers 25 years, and the total number of customer 

disconnected over this period is recorded and discounted at the social annual discount rate of 3.5%3, to give a total 

discounted number of customer interruptions. 

The power law produces highly variable statistics [3], a characteristic that makes it suitable for use in describing the 

statistics of impact low probability, but which means that the Monte Carlo simulation needs to be iterated a very large 

number of times to ensure confidence in the outputs.  Here we use 250,000 iterations to ensure confidence in the 

findings, generating stable statistics for the mean, P10 and P90 statistics.  We have also examined the size of events 

with differing return periods, though these become less reliable where the return period is over 100 years. 

A counterfactual case is used that is consistent with the data in Section 4.1.  The parameters are shown in Table 3.   

Table 3: Counterfactual case parameters 

Model parameter Value 

Expected annual number of days with total outages affecting > 10,000 customers (Poisson λ) 5.5 

Power law α parameter 1.7 

Average disconnection time for outages on days with > 10,000 disconnections 125 minutes 

# years 25 

Discount rate 3.5% 

 
3 The social discount rate suggested by [22]. 
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Average annual demand per meter (domestic and non-domestic) 8.21 MWh/year 

It should be noted that the modelling presents a theoretical estimate of how changing fault rates and the chances of a 

large outage event can bring savings through reductions in CML.  There are two key messages: 

 Any resilience intervention will only yield a benefit if an event occurs that allows it to make an impact and it is 

likely to be difficult to identify in many instances the extent of the saved costs that interventions may have 

delivered. 

 The alpha parameter is empirically derived from a large dataset collected over many years and it is unlikely to be 

possible to know in advance how a particular set of resilience measures might reduce this.  However, improved 

understanding of what network characteristics make cascade events more probable could deliver insights into 

design features that will reduce their likelihood. 

5.1 Results 

56 Monte Carlo simulations were run using different combinations of event likelihood and alpha, each with 250,000 

iterations of a 25-year period.  The following key scenarios are defined relative to the counterfactual in: 

 SCENARIO 1: Event occurrence is unchanged; Alpha increases by 10%. 

 SCENARIO 2: Event occurrence is reduced by 10%; Alpha is unchanged. 

 SCENARIO 3: Event occurrence is reduced by 10% and Alpha increases by 10%. 

Table 4 shows a comparison of headline statistics for the data and the Monte Carlo output for the counterfactual case.  

The ‘average number of disconnections per high disconnection day’ is higher in the modelled case because it is 

derived from 200,000 samples from the power law distribution and therefore includes some very large events, as 

illustrated in Figure 6. 

Table 4: Comparison of Monte Carlo simulated event statistics with those of the SSEN data. 

Parameter Data Model 

alpha 1.7 1.7 

Expected number of days with > S disconnections in a year 5.51 5.51 

average number of disconnections per high disconnection day 21,819 24,278 

Sample size 129 200,000 
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Figure 6: Comparison of modelled event occurrence with the data. 

 

Table 5 shows the key results for the scenarios and counterfactual case, showing the discounted 25-year mean 

number of customer disconnections occurring on high disconnection days, and the sizes of individual daily events with 

return times of 10, 50, 100, 500 and 1,000 years.  The probability that over 25 years a given scenario will deliver fewer 

customer disconnections is also presented. 
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Table 5: Model results comparing the three scenarios for changing the likelihood of extreme outage days and the 
severity of the extreme outages: mean number of customers disconnections (discounted total over 25 years), the size 
of events with different return times, and the probability that the scenario will deliver few large customer 
disconnections over a 25-year period. 

Scenario Alpha 

Expected # 
high 

interruption 
days per 

year 

Statistic 

Customer disconnections (thousands) Prob of 
reduction in 

total 
interruptions 
over 25 years 

Mean 
(25-yr) 

Event return time (years) 

10 50 100 500 1000 

CF 

 

 

1.70 

 

 

5.51 

 

P10 1852.3 23.9 103.6 260.2 384.4 910.2 - 

mean 2337.2 24.3 105.6 272.1 408.9 1050.5 - 

P90 1852.3 24.7 107.7 284.4 434.5 1200.2 - 

 

1 

 

 

1.70 

 

 

4.95 

 

P10 1650.2 23.9 103.5 260.2 383.8 909.6 69% 

mean 2101.0 24.3 105.7 272.0 408.6 1045.8 71% 

P90 1650.2 24.7 107.8 284.3 434.5 1200.1 74% 

 

2 

 

 

1.87 

 

 

5.51 

 

P10 1697.9 21.3 83.9 193.2 274.9 605.1 70% 

mean 2067.6 21.5 85.2 201.3 292.1 689.2 73% 

P90 1697.9 21.7 86.7 209.0 309.8 778.5 75% 

 

3 

 

 

1.87 

 

 

4.95 

 

P10 1515.8 21.3 83.8 194.0 274.8 595.7 86% 

mean 1862.5 21.5 85.4 201.8 292.2 685.4 88% 

P90 1515.8 21.7 87.0 209.8 310.7 775.4 90% 

 

Scenario 1 and Scenario 2 give similar 25-year total numbers of disconnections: Scenario 1 through reducing the 

probability of a high interruption day; Scenario 2 through reducing the chance that an event is severe.  It is notable 

that the impact of reduced event probability on the size of significant individual events of differing return times is 

negligible, indicating that improving everyday reliability/resilience will give little protection against the occurrence of a 

very large event. 

Figure 7 shows the results of an investigation of the impact of changing alpha and event probability over a wider range 

of values.  Moving upwards corresponds to more frequent high-impact events, such as might be expected due to 

increases in occurrence of extreme weather events due to climate change.  Moving leftwards corresponds to 
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decreasing alpha4.  This might occur due to the increasing interconnectedness of different infrastructure networks and 

the increasing complexity of the electricity networks as they develop to accommodate net zero ambitions. 

 

 

Figure 7: Scatter plot showing the 25-year average discounted number of customer interruptions (thousands) that 
result from different assumptions on the # large events per year and the alpha parameter for the log law.  The larger 

circles correspond to the scenario assumptions from Table 5. 

Figure 8 shows the cumulative distribution function for the difference in total discounted number of customers 

disconnected over 25 years between the counterfactual and the scenario. Negative values indicate a saving; the 

cumulative probability is the chance that the saving will be at least as large as the x-axis value.  Comparing the curves 

for Scenario 1 and Scenario 2, it is evident that increasing the alpha parameter is driving a reduction in the number of 

very severe events, as was also noted above in relation to the results in Table 5. 

 

Figure 8: the cumulative distribution function for the difference in total discounted number of customers 
disconnected over 25 years between the counterfactual and the scenario. 

 
4 With reference to Figure 4, a reduction in alpha makes the gradient shallower, implying a greater probability that the 

next extreme event will be large. 
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Figure 9 shows that the influence of lower event severity starts to become apparent for event sizes in which more 

than 150,000 customers are disconnected.  From Table 5, it can be seen that an event of this size has a modelled 

return time of roughly 50 years. 

 

Figure 9: Plot showing how changes in the event frequency and probability of severity impact on the probabilities of 
different sized events.  Differences show reductions in probability of events of a particular size. 

Table 6 steps through the calculation to derive an estimate for the reduction in overall costs due to outages that 

results from the changes made in each Scenario.  The values given are discounted 25-year estimates of the mean, P10, 

P50 and P90 amounts.  The SSEN region is estimated to contain around 800,000 electricity meters5, both residential 

and non-residential.  Scaling the results to the UK, with an estimated 33 million6 electricity meters, gives the following 

UK-wide potential avoided costs. 

 
 
6 Estimated from the ratio of domestic:non-domestic meters for England and scaling according to 81% of electricity 
consumption being in England. 
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SCOTTISH DATASET 

 25-year discounted customer 
interruptions (thousands) 

Estimated CML (millions) Estimated unmet demand (MWh) 25-year discounted cost of unmet 
demand (£m) 

CF 2337 525 8208 £49.25 

 Reduction in 25-year discounted 
customer interruptions (thousands) 

Reduction in Estimated CML (millions) Reduction in estimated unmet demand 
(MWh) 

Reduction in 25-year discounted cost 
of unmet demand (£m) 

Scenario mean P10 P50 P90 mean P10 P50 P90 mean P10 P50 P90 mean P10 P50 P90 

1 -239 -816 -224 338 -54 -183 -50 76 -841 -2867 -787 1188 -£5.04 -£17.20 -£4.72 £7.13 

2 -271 -783 -213 245 -61 -176 -48 55 -950 -2749 -748 862 -£5.70 -£16.49 -£4.49 £5.17 

3 -472 -985 -413 31 -106 -221 -93 7 -1659 -3461 -1450 110 -£9.96 -£20.76 -£8.70 £0.66 

UK-WIDE EXTRAPOLATION 

 

25-year discounted customer 
interruptions (thousands) 

Estimated CML (millions) Estimated unmet demand (MWh) 25-year discounted cost of unmet 
demand (£m) 

CF 96961 21793 340533 £2,043 

 

Reduction in 25-year discounted 
customer interruptions (thousands) 

Reduction in Estimated CML (millions) Reduction in estimated unmet demand 
(MWh) 

Reduction in 25-year discounted cost 
of unmet demand (£m) 

Scenario mean P10 P50 P90 mean P10 P50 P90 mean P10 P50 P90 mean P10 P50 P90 

1 -9932 -33866 -9297 14035 -2232 -7612 -2090 3155 -34882 -118939 -32651 49293 -£209 -£714 -£196 £296 

2 -11224 -32468 -8839 10185 -2523 -7298 -1987 2289 -39420 -114031 -31043 35769 -£237 -£684 -£186 £215 

3 -19602 -40879 -17129 1296 -4406 -9188 -3850 291 -68843 -143570 -60159 4551 -£413 -£861 -£361 £27 

Table 6:  Estimate of the 25-year discounted value (£m) of the reduction in unmet demand resulting from the reduced risk of major outage events.  Values are 
based on analysis for the SSEN region and extrapolated to the whole UK.  Negative values imply a saving or cost reduction over the counterfactual case.
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6 Conclusions 
The following section draws together the main conclusions of this benefit assessment and suggests areas for further 

investigation. 

 Monte-Carlo modelling based on the faults observed within the SSEN region over 23 years suggests that 

improving electricity system resilience through cutting fault occurrence and fault severity could save of the 

order of hundreds of millions of pounds over 25 years (Table 6). 

The link between this notional saving and the energy system model currently under development is premised on 

the model being able to identify both new areas of network vulnerability, and capture characteristics of the whole 

network that allow the development of effective interventions to reduce the chances and minimise the impact of 

large cascade failure events. 

 Improving everyday reliability and resilience will give little protection against the occurrence of a very large 

event (Table 5). 

Scenario 1 and Scenario 2 give similar 25-year total numbers of disconnections: Scenario 1 through reducing the 

probability of a high interruption day; Scenario 2 through reducing the chance that an event is severe.  The impact 

of reduced event probability on the size of significant individual events of differing return times is negligible.  This 

indicates considerable benefit could be derived from understanding how to lessen the chances of the very largest 

events. 

 The most impactful resilience improving approach is likely to combine ‘traditional’ resilience measures, that aim 

to cut failure rates, with interventions that reduce the likelihood of failure cascades (Section 3). 

For example, improving fault response times, and thereby reducing the length of time for which the system is 

under stress, could cut the chances of a cascade event [2]. And developing ‘fire breaks’ within and between 

networks, for instance, strategically positioned battery storage that could deliver back up power for long enough 

to prevent the cascade of failures between systems. 

The study presented here could be usefully extended through: 

 

 Analysis of UK-wide distribution and transmission fault data for both the electricity and gas networks, to include 

comparison between the statistics of different regions to see if it is possible to draw out intrinsic network 

characteristics that influence events that bring large numbers of outages. 

 Deeper analysis of outage times in relation to the number of customers affected. 

 A more sophisticated analysis of linked faults than aggregating total daily outages. 
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