Scenarios for Extreme Events **Alpha Phase – End of Phase Show and Tell** April 22, 2024

Who are we?

Jenna Macgregor Resilience Engineer

Luke Edelston

Senior Consultant

ESO is transforming...

- From Summer 2024, the Electricity System Operator will transform into the National Energy System Operator
- New responsibilities including whole energy network planning, resilience and security of supply reporting and a government advisory position.
- Will inform policy and investment decision by reporting on risks to industry and security of supply
- An annual Energy Resilience Assessment Report, issued to government, will assess the resilience of the energy sector

How could a model support resilience assessments?

Activity

We **identify** risks that could damage or disrupt the GB Whole Energy System

We assess the socioeconomic impact & likelihood

We provide recommendations

How could a model support resilience assessments?

Vision

Develop a model framework that describes vulnerabilities to the GB energy network, using weather and non-weather stress event scenarios and key system interfaces (including but not limited to telecoms and water), to inform risk assessment and resilience planning.

Why do we need to innovate?

- > A high-level view of the whole energy system
- > Ability for networks to interact and impacts to cascade
- Resilience metrics must relate impact to consumers
- Able to use weather and non-weather scenarios as inputs scenarios

Risk assessment framework

Past data is analysed to form The model estimates the **impact** stress event scenarios, which to consumers that can be Scenarios are occur with a given likelihood, compared to resilience fed into a such as: metrics, such as: **model** of the High wind events GB energy Number and duration of ٠ Gas supply restrictions consumers disconnected. system **Stress Event** Resilience Impact Input to--> output Model Scenario(s) **Estimates**

Indicative model results

Loss of gas supply to consumers

Consumers switched to electricity based heat/cooking where possible

,

Increased load of electricity system caused substation failures

Model learnings and next steps

- Prototype model is capable of modelling interactions between gas and electricity networks
- Impacts can be estimated in terms of customer focussed resilience metrics
- Can be scaled to GB
- Further work to refine scenario definitions, fragility and restoration curves and different network configurations

How do we quantify the impacts?

- The model estimates the impact to consumers that can be compared to resilience metrics
 - Able to identify different types of consumer
 - Enables open and transparent conversations with industry
 - Risks can be compared numerically

Electricity Resilience Metrics

Number and length of consumer disconnections

Total Energy Not Supplied (MWh pa)

Number and length of **vulnerable consumer** disconnections

Value of lost load

Gas Resilience Metrics

Number and length of **consumers** off gas supply

Number and length of vulnerable consumer off gas supply

Alpha shows significant benefits can be realised through GB energy system modelling and focussed investments

	25-year discounted cost of unmet demand (£m)			
CF	£1,980			
	Reduction in 25-year discounted cost of unmet demand (£m)			
Scenario	mean	P10	P50	P90
1	-£203	-£693	-£190	£287
2	-£230	-£664	-£181	£208
3	-£401	-£836	-£350	£27

Savings order of ~£100m+ over 25 years

Counterfactual: No change in statistical parameters (5.5 events, $\alpha = 1.7$) Scenario 1: 10% Fewer events (5 per year), same severity distribution Scenario 2: Same # events, lower severity probability ($\alpha = 1.9$) Scenario 3: Fewer events and lower severity (5 events & $\alpha = 1.9$)

Alpha achievements

A basis for how quantitative information will support the Energy Resilience Assessment Report

A defined methodology for defining extreme event scenarios

Prototyped fast running, whole energy system model

Consumer-focused output metrics based on numerical evidence

Innovative simulation scaling – ability to adjust scenario parameters and monitor how impact changes.

Ability to compare consumer impacts from different risks

What's next?

With the beta application submission due in May 2024, the vision is to:

- Geographically scale the model from the Scottish region to the GB wide system.
- Develop the proof-of-concept scenarios
- Investigate use of AI reinforcement
- Deepen the precision of network modelling
- Expand feedback loops

A special thanks to all those directly involved!

Any questions?