Advanced Dispatch Optimisation - Phase 2 (ADO 2)

Making ESOs strategic vision for dispatch optimisation become a reality

The IBM Team

Sarra Börsig

Erwin Frank-Schultz

Christophe Lestavel

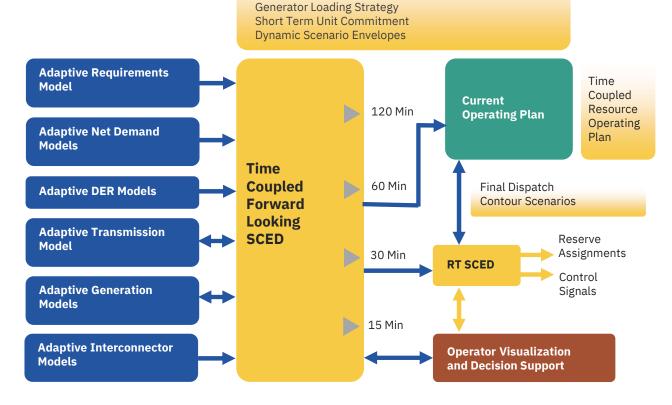
Donald Taylor

Annie Nofer

Paseka Khosa-Chavalala

Scope and Objective

ESO engaged IBM to undertake a **21-week strategic engagement** to develop a:


- Roadmap, to help ESO define a new programme
- Deep dive into the input data models, to understand the data gaps and ways to address these gaps
- Logical architecture
- Assessment of the organisational impact and retraining needs

Objective today is to share our findings and discuss next steps

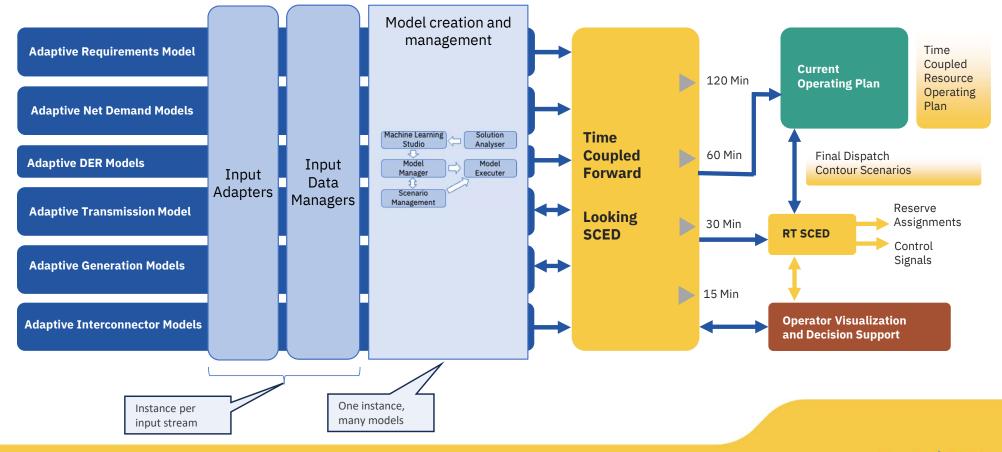
Our Starting Points

ESO vision created by Tapestry as the north star

- Automated insights through adaptive ML input data models
- Probabilistic trajectories of various system states, taking into account external conditions
- Time coupled security-constrained economic dispatch optimisation engines creating SOP , instructions and Reserve
- Enhanced or automated operator decision support
- Automated performance monitoring

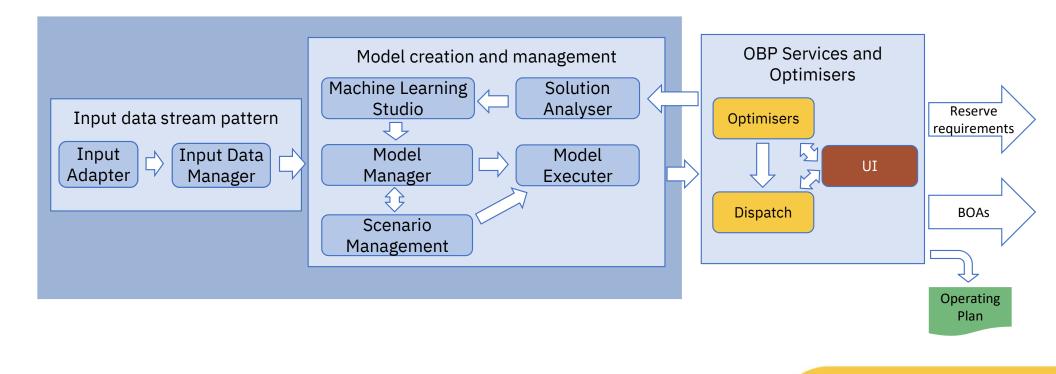
Probabilistic Demand Trajectory

Probabilistic Renewable Resource Trajectory


We developed a high-level logical architecture

- Provides a view on how the ADO system could be realised
- Designed to build upon the existing OBP and leverage its strengths, while also utilizing the PEF for certain components
- Introduces several new services

Architecture Artefacts	Platforms
System Context	New Components
Architectural Principles	Machine Learning Studio
Architectural Decisions	Scenario Management
Architectural Decisions	Model Manager
Component Model	Solution Analyser
	OBP (Open Balancing Platform)
	PEF (Platform for Energy Forecasting)
	CNI Private Azure Public


Architecture mapping to the north star

Architecture Overview Diagram

Architectural decisions

ID	Торіс	Possible Alternatives	Decision
001	Data cleaning	 Data cleaning component for each (or a group of) input stream(s) One data cleaning component 	Data cleaning component for each (or a group of) input stream(s)
002	Scenarios	 Optimise multiple scenarios Optimise single scenario 	Optimise single scenario
003	Input adapters	 One adapter per input stream type One adaptor to Digital Spine Share adapters 	Share adapters
004	interfaces	 Direct interface Use existing interfaces 	Direct interface
005	ML Models	 Models represented as components Models treated as data 	Models treated as data
006	Hosting and technology	 Build enhanced forecasting on OBP Expand PEF 	Not Decided

national**gridESO**⁸

We detailed out the proposed forecasting models...

- Detailing out the end vision for adaptive, machine learning models to forecast optimiser input variables
- Data requirements to train and run the model
- Current data availability
- Data Quality
- Identify key decisions and next steps

End Vision Module	Input Data Model Area	Key Data Challenges	Immediate Actions
	Generation	Availability	 Planning of real-time data collection period where required (e.g., generator conditions, total system demand, binding transmission constraints etc.). Full analysis of quality and granularity issues (e.g., Data Historian, NED, weather data).
Adaptive	Transmission (IBM View)	Availability O Quality D	 Discussion with TOs regarding the ownership, format, and required frequency of dynamic line ratings. Full analysis of quality and granularity issues (e.g., accuracy / granularity of current weather forecasts for scenario building).
Input Data Models	Interconnector	Availability	 Detailed analysis of data sources (some requiring purchase) to establish whether granularity and quality are sufficient for this purpose (e.g., timescales of "scheduled flows", ability to forecast market data in the creation of scenarios).
	DER	Availability	 As for generation: Planning of real-time data collection period where required (e.g., generator conditions, total system demand, binding transmission constraints etc.). Full analysis of quality and granularity issues (e.g., Data Historian, NED, weather data).
Net Demand Forecast	Demand Forecast and Consumer Behaviour	[Unable to obtain SME input.]	 Initial availability and quality analysis (as completed for the other modelling areas).
Module	Embedded DER	Dependent on methodology – see discussion in section 6.4.	N/A

We developed a capability framework...

In order to create a roadmap, we needed to truly understand the to-be capabilities that are required to enable the vision. We identified **11 direct capabilities**. These were then broken down into enabling capabilities:

L0.1

Forecast demand and consumer behaviour in a given scenario

L0.5

L0.9

Forecast of Distributed Energy Resource outputs in a given scenario

Forecast interconnector flows

given a certain scenario

L0.2

Forecast embedded DERs outputs in a given scenario

Forecasting of storage assets in a given scenario

L0.10

Optimise for the upcoming dispatch period to minimise cost and satisfy the energy balance requirement, transmission security constraints and all reserve requirements, for all assets and service types

L0.3

Forecast thermal generator outputs in a given scenario

L0.7

Dynamically calculate reserve requirements based on actual system conditions

L0.11

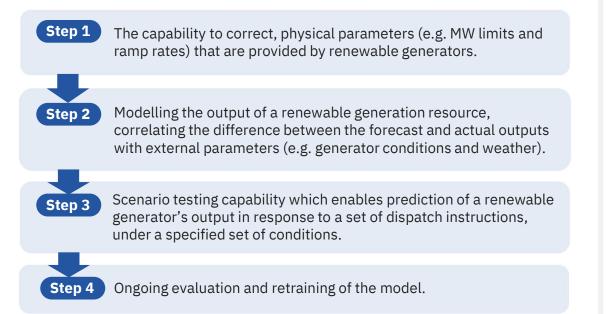
Provide operators with visualisation of dispatch scenarios and optimiser output, to improve situational awareness

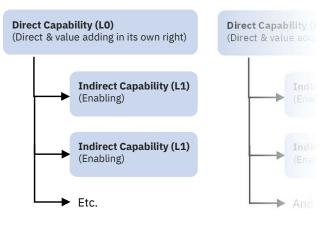
Forecast renewable generator outputs in a given scenario

L0.8

L0.4

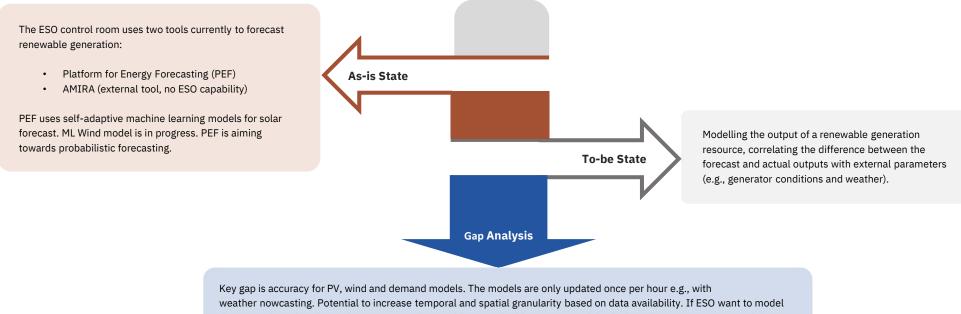
Calculate a set of ranked transmission constraints and suggest strategies to mitigate




Example of how we broke down the capabilities

Direct capability: Forecast renewable generator outputs in a given scenario

Indirect, enabling capabilities:



*Example of how direct and indirect capabilities are linked

... to perform a gap analysis

Example: Forecast renewable generator output in a given scenario

the output based on dispatch instructions, this would require building a new model, which might reuse existing capabilities. It would also benefit from ESO already having the right people and skills. Three alternative solutions to close the gap:

- Address problems through the proper use of penalties and/or incentives
- Developing a predictive error forecasting model.
- A combination

Evolving the end vision

In our engagement with the users, we have gone above what Tapestry suggested and have added:

- Forecasting of storage assets
- Forecasting of aggregated units
- Differentiation of transmission constraint types including inertia
- Cross-cutting scenario capability

To close the gaps, we identified different types of work packages

Regulatory Framework Agreement and/or Stakeholder Engagement

- Agree responsibilities and ownership of data
- Who is best placed to forecast certain values and what is the impact

Value and Feasibility analysis

- Is the full functionality required and by when? E.g. adaptive model, value plateau
- Is it possible to build such a model, e.g interconnectors

Agile Development

- All development is foreseen as agile development. Includes design and testing
- Once development is completed, the model could be handed over to IT/BAU

Research

- Benchmarking
- Impact Assessment

Design

- detailed planning and specification of how the components will be developed, their functionality, and their integration into the overall system
- Optimisers and software that enables developing global scenarios

Full Roadmap – Page 1

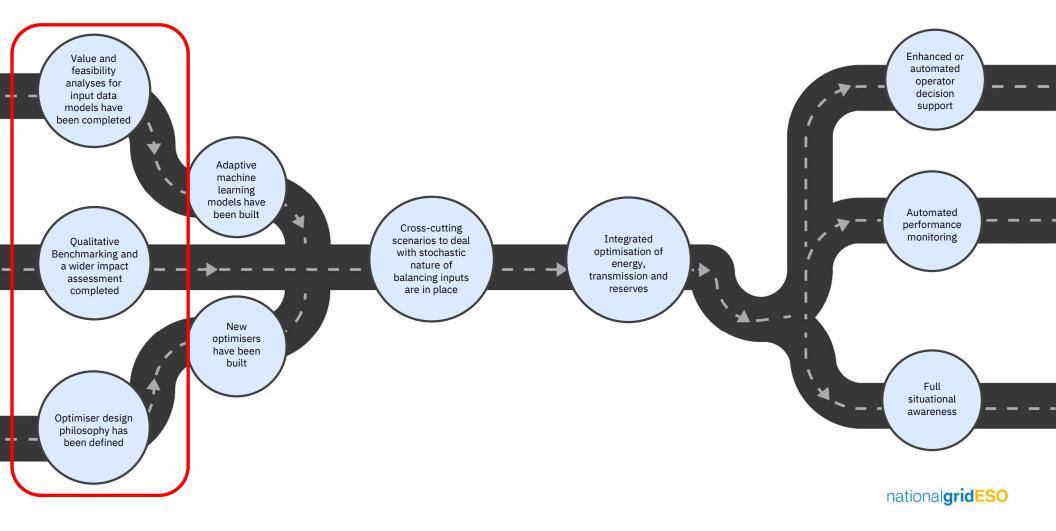
Category	Year 1				Year 2				Year 3			~ End of Yea
Value and/or feasibility analysis Design	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
 Iterative agile Development Stakeholder engagement Dependency 	-			٠ ۲	- F		4°	ę.	¥-	¥-	40	÷ .
 Stakeholder engagement Dependency and/or regulatory conversation 		g Dependend ICMS, OLTA, PN		ouilding models for c	ertain constrain	t types						
Agile process O Mix of categories	2) F 3) (PEF and innovat Changing marke	ion projects are	ongoing and working centralised dispatcl	on demand, so	lar and wind mod	lels					
Research												
Qualitative Benchmarking / QCA												
Impact Assessment for wider market changes: centralised dispatch, open vs closed BOAs, locational prices												
value and Feasibility Analyses for the Models	\prec											
1.02 Demand				-	_							
3.01 Thermal Generators						Options						
4.02 Renewable Gen						1) Feed	additional requir	ements into	existing prog	rams e.g., PEF	or NCMS	
6.02 Storage					ecision		op a new model of the model doe	oon't justifu	ho cost			
8.02 Transmission model(s)					Point	4) Mode	l is not feasible					
9.01 Interconnectors		C			Y	5) ESO r	ot responsible fo	or the model				
5.02 Non-Embedded DER	Dependend	ies										
2.02 Embedded DER	A		\bigcirc									
7.01 Analyse As-Is, To-be and Gap for Reserves	Dependen	cies 🕒										
Regulatory Framework Agreement and/or Stakeholder Engagemen	ıt											
1.01 Forecasting Demand												
2.01 Forecasting Embedded DERs								0	JTCOME: Clea	r view op who	ia	
4.01 Forecasting Renewable Generators		Decision							sponsible for			
5.01 Forecasting Non-Embedded, distribution connected DERs							Point	ar	nd forecast			
6.01 Forecasting Storage							Y					
8.01 Agreement on provision of Dynamic line ratings												

*Dependencies 🚯 : Stakeholder Engagement with DSOs

*Dependencies B : ESO to define reserve services past 2025

Continue...

Full Roadmap – Page 2


Category	Year 1				Year 2				Year 3			~ End of Yea
 Value and/or feasibility analysis Iterative agile Development Research 	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
 Iterative agile Development Stakeholder engagement and/or regulatory conversation Research Dependency 	1)		NA and OSA are buil									
Agile process OMix of categories	3)	Changing marke	ion projects are ong et regulation e.g ce the VES starting Q4	ntralised dispatch			dels					
10.01 Optimiser Design Philosophy Definition												
10.02 Iteratively Build New Optimisers and /or Decision Support Tool Improve Existing Optimiser	s or									<u> </u>	<u></u>	
Agile Model Development												
11.01 Design phase - Machine Learning Studio												
11.02 Build or Buy and Implement the Machine Learning Studio												
11.03 Design phase - Scenario developer												
1.04 Build or Buy and Implement the Scenario Developer											O,	
1.05 Define and build initial scenarios											(2
oundation Work Package	Dependen	cies:				<u>()</u> ,						
L.02 Demand model	Value and						<u>O</u> ,					Models could be develope
2.03 Embedded DER model	Feasibility Analyses								O,			on one of the OBP or PEF
3.02 Thermal Gen model	outcome suggests t							O,				developmen environmen
1.03 Renewable Gen model	build a new						\bigcirc)				and then be deployed on
5.03 DER model	model									Ó,		preprod and
5.02 Storage Model								O,				prod once th are validated
7.02 Reserve model									Ó,			At the
3.03 Transmission model							\bigcirc					end, handov to IT and
9.02 Interconnector model											O.	business operations.
Program Preparation												operations.
1.08 Data Gathering						Ó.						
1.10 Program Set-up								Ó,				
1.11 Analyse impact on other programs												

Embedded DER Model

Category		Year 1				Year 2				Year 3				~ End of Yea
 Value and/or feasibility analysis Iterative agile Development 	DesignResearch	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
 Stakeholder engagement and/or regulatory conversation 	Dependency	Ongoi	ng Dependen NCMS, OLTA, PR		ilding models	for certain con	traint types							
🗅 Agile process	Mix of categories	2) 3) 4)	NCMS, OLTA, PNA and OSA are building models for certain constraint types PEF and innovation projects are ongoing and working on demand, solar and wind models Changing market regulation e.g centralised dispatch, locational marginal pricing, Integration into the VES starting Q4 2026											
Embedded DER Model path								OUTCOME:	Clear view o	on who is				
.01 Regulatory Framework Agreement PERs	on Forecasting Embedded						cision pint	responsible and forecas		ig the correct d	ata			
.02 Value & Feasibility Analysis for Emb	pedded DER	Depende A	encies	Decis Poi										
.03 Iterative Development - Embedded	I DER model			Ĭ									Deployme onto PEF	
1.05 Define and build initial scenarios													productio environm	
1.08 Data Gathering														

*Dependencies 🚯 : Stakeholder Engagement with DSO

Street View Roadmap - Milestones

Next steps – Projects to kick off

Project	Cost estimate	Suppliers (see supplier list for suggestions)	ESO involvement
Benchmark	L	Consulting, REEF, ENTSO-E	e.g., Innovation team
Impact Assessment	L	Research/ Universities	
Value and/or feasibility analyses (in sum)	Н	Tech Consulting companies	
Optimiser Design and Implementation	M/H	Lead by Tech consulting, support from research	
ML Studio Design	L/M	Tech Consulting companies	
Stakeholder Engagement and/or Regulatory Framework Agreement	L	ESO internal, possibly supported by consulting	
Program Preparation	L	ESO internal, possibly supported by consulting	

Cost Legend: L <500,000; M >500,000 - <1,000,000; H>1,000,000

Organisational Impact

The ADO can enable a new operating model in the control room that will require business change and retraining activities.

Key retraining needs

- Base roles and **team organisation will remain** (strategy / transmission and energy), building the right operating plan, monitoring events and activation of contingency plans. However, the introduction of ADO creates multiple **opportunities to improve the Operating Mode**l across all 3 teams thanks to a higher level of organisational flexibility and team integration (e.g. time horizon of each team, definition of the zones, level of granularity of the studies, consolidation of roles, etc.). Extensive business change and retraining on the new operating model will be required.
- 2 Retraining of the Engineers to understand and **adopt a new way of working (**a shift towards a "collaboration" with the system; need for system feedback to continuously improve its performance) will be required for all engineers.
- A new role needed in each team : **data engineer**, in charge of maintaining and continuous training of the adaptors and optimiser. Supported by a group of data scientists. These new roles will obviously require training.
- 4 Data manipulation and the handling of more simple events will be managed almost automatically (with supervision); The overall **training** and authorisation process will have to be adapted to increase the level of training "hands-on" simulation and address the reduction of "entry level" tasks in the Control Room. This will also mitigate the risk of a shift of the engineer's mindset towards a more passive role and a loss of expertise in handling specific situations.
- 5 Each team in the Control Room already includes today a significant share of more **digital-savvy engineers** in their respective workforce, who will adopt these new roles with greater ease.

Next steps for the project

The ADO 2 project ends on Friday. All milestones were met on time. Deliverables have gone through multiple review cycles. On Friday we submit

- Gap analysis report + capability framework + value tree
- Work package and roadmap report + supplier list
- Architecture overview report
- Project overview report, including a section on organisational impact
- This presentation

The final input data model report has already been submitted. **We will need email confirmation that all deliverables** have been received and are considered signed off.

Next steps after the project

- Kick off the next set of projects
 - Decide on approach e.g., priority order, VFA as one or separated etc.
 - Internal communication to ensure buy in
 - Secure finances
- ADO video
- Programme set up

Why is ADO needed?

The ADO vision was created to ensure that the ESO dispatch optimisation process and tooling are fit for purpose for the future. It helps ESO **handle growing uncertainty** (e.g., caused by more fluctuating assets, the growing number of small, distribution connected assets, storage, aggregation and demand side flexibility) **through better forecasts**.

Furthermore, ADO aims to **optimise the bigger picture across longer time frames** and not just decision by decision. This ensures that balancing actions are reliable and cost-efficient. The co-optimisation of energy, reserves and constraints are vital to achieve this.

ADO will **enable performance monitoring** and continuous improvements of the forecasts, optimisers and control room decisions.

It also helps ESO make their **decision more transparent** and comprehensible.

Key values achieved by ADO are:

- Reduction of MW volume bought
- Buying the MW cheaper
- Reduction of workload

Backup

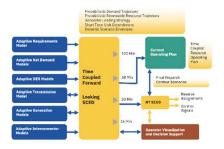
Simple Roadmap

Category	Year 1				Year 2				Year 3	Year 3				
 Value and/or feasibility analysis Iterative agile Development 	 Design Research 	Q1 Q	2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
 Stakeholder engagement and/or regulatory conversation 	 Dependency 		LTA, PNA ar	nd OSA are build										
🗘 Agile process	Mix of categories			orojects are ongo gulation e.g cen			lar and wind mo rginal pricing,	dels						
Research														
Qualitative Benchmarking / QCA														
Impact Assessment for wider market c	nanges							Optio	าร:					
Value and Feasibility Analyses for the	Models								ed additional r velop a new mo	equirements into odel	existing pro	grams e.g., PE	F or NCMS	
Value & Feasibility Analysis for Input Da	Dependencies A	1				Decision Point	4) Mo	del is not feasi		n't justify the cost the model				
Regulatory Framework Agreement an	d/or Stakeholder Engagement						\mathbf{X}							
Regulatory framework agreement with distribution connected assets, storage a		les,					Decision Point		OME: Clear vie					
Optimiser Design and Implementation	ı								nsible for prov precast	iding the correct	data			
Optimiser Design Philosophy Definition														
Iteratively Build New Optimisers														
Agile Models Development													Models cou	
Design Phase - Machine Learning Studi	0												be develop on one of th	
Build or Buy and Implement the Machin	ne Learning Studio												OBP or PEF developme	
Design Phase - Scenario developer													environme and then b	
Build or Buy and Implement the Scenar	rio Developer											<u>O.</u>	deployed o	
Define and Build Initial Scenarios							1						preprod an prod once t	
Iterative Development of the Input Dat	a models	Dependencies 🕒					<u>()</u> ,						are validate	
Program Preparation													At the end, hando	
11.08 Data Gathering							Ó,						to IT and	
11.10 Program Set up									(2			business operations	
11.11 Analyse impact on other program	าร													

*Dependencies 🚯 : DSOs, Reserve Service Definition

*Dependencies 🚯 : Value and feasibility analysis

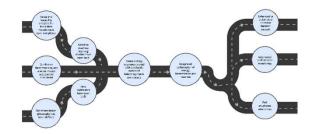
NG ESO – Advanced Dispatch Optimisation 2 (one pager)


nationalgridESO

NG ESO are the transmission system operator for Great Britain. They ensure that electricity supply meets demand every second of every day.

\bigcirc

Business Problem


Google Tapestry created a strategic high level vision for ESO that describes how dispatch optimisation could look like in 5 to 10 years. ESO wanted IBM to figure out how this vision could become a reality.

Solution

To develop a meaningful roadmap, we needed to do a gap analysis first. We defined to-be capabilities based on Tapestry's vision and compared it to the as is. We then defined meaningful work packages to close the gaps and identified dependencies, cost and potential suppliers.

Value Realisation

A tangible roadmap, to help ESO define a new programme

- Deep dive into the input data models, to understand the data gaps and ways to address these gaps
- Logical architecture
- Assessment of the organisational impact and retraining needs