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1 Introduction 

This document acts as the Data model report deliverable specified in the Advanced 

Dispatch Optimiser – Phase 2 (NIA2_NGESO044) project agreement between National Grid 

Electricity System Operator Limited (ESO) and IBM United Kingdom Limited. 

This report builds on work previously completed by Google X’s Tapestry project. As such it 

is suggested that Tapestry’s Advanced Dispatch Optimizer System Roadmap Report is read 

in advance of this. 

The core output of the Google X Tapestry report was the below architectural overview of the 

proposed dispatch system: 

 

Figure 1: Google X Tapestry’s Advanced Dispatch Optimizer System Roadmap Report – Architectural Overview 

Within this Data model report deliverable, the focus is on the Adaptive Input Data Models1 – 

exploring current and planned capabilities, the required final capability, as well as the 

associated gaps and next steps. The model groups discussed are: 

1. Adaptive Generation Models2 

a. Thermal 

b. Renewable 

c. Grid scale duration limited assets, such as batteries and pumped storage 

[added following Google X clarification and not explicitly referenced within the 

Tapestry report] 

 
1 Whilst Google X explicitly reference the “period from four hours ahead through to real-time 
dispatch operations”, the detailed vision in this report is purposefully time horizon-agnostic – 

providing an element of flexibility when considering the optimal use of such models. 
2 These generation models are designed at a high-level to be applicable to any fuel type participating 

in the balancing mechanism. However, given the dynamic nature of the energy sector, one would 

have to ensure going forward that no new technologies or fuel types are mistakenly omitted.  
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2. Adaptive Transmission Model 

3. Adaptive Interconnector Models 

4. Adaptive Distributed Energy Resources (DER) Models 

5. Adaptive Net Demand Models 

a. Demand Forecast and Consumer Behaviour 

b. Embedded DER 

[Note: The Adaptive Requirements Model is out of scope for this engagement.] 

An important clarification here is the distinction between DER and embedded DER. For 

purposes of this report, definitions are as follows: 

• DER = Instructible, distribution-level generation resources, modelled either as 

individual units or aggregated resources. 

• Embedded DER = Non-instructible resources without any operational metering 

visible to ESO. [“Behind-the-meter” (BTM) resources.] 

The positioning of each of these model groups within the wider UK electricity landscape is 

indicated in the below graphic. 
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Figure 2: Model group positioning and focus within the context of the wider UK electricity landscape 
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1.1 Discussion Point: Use of Existing External Models and Procedures 

Whilst the primary purpose of this report is to further detail the proposed input data model 

groups outlined by Google X Tapestry (see figure above), it is also worth noting concerns 

raised by ESO Subject Matter Experts (SMEs) regarding the inward-looking nature of the 

end vision. 

The end vision, at a high-level, describes a set of internal ESO capabilities. Given the 

interconnected and interoperating model vision outlined at the core of the Virtual Energy 

System (VES), one may expect the future dispatch plan to focus more on the potential value 

that can be brought by parties external to ESO. For example, focus could be on gaining 

access and integrating existing transmission models initially, as opposed to defining a new 

adaptive ESO-owned model. Additionally, in-flight projects such as CrowdFlex may succeed 

in getting suppliers / aggregators to provide ESO with access to their data in some form.  

This view is not seen as being directly in opposition with the IBM interpretation of the 

Google X end vision, with certain elements rightly owned by external parties. This principle 

is alluded to below when discussing, for example, the Transmission Operator (TO) 

ownership of dynamic line rating calculations, or the Distribution System Operator (DSO) 

ownership of Distributed Energy Resource (DER) models. 

Full analysis of existing capabilities external to ESO is not in scope for this engagement, but 

relevant elements are considered at a high-level and highlighted as necessary deep-dive 

discussions in the roadmap. 

1.2 Discussion Point: Forecasting and Scenario Testing 

An important principle in this report is the use of forecasting models and subsequent 

scenario testing as connected capabilities. Within the Google X end vision, there are 

multiple references to scenario testing capabilities, with the input data models able to 

support variable inputs to assess the associated sensitivity of outputs. 

It is important to note, responding to a clarification request, that all proposed models look 

to forecast an output of some type. Differences lie in the proposed use of existing forecast 

data when detailing the model inputs. For example, in Google X’s view of predicting actual 

demand, it is suggested that existing demand forecasts could be used as input data, with 

the model then assessing how specific scenario conditions may alter this forecast in reality. 

In this case, a separate forecast model (be that existing or new) is a core dependency.  

However, the detailed methodologies can readily be altered to not include any such 

forecast dependencies – with the adaptive input data models instead performing a straight 

forecasting function (as opposed to assessing and altering existing forecasts), with an 

additional scenario testing capability3. 

 
3 Note: The architectural deliverable discusses how an overall scenario testing capability could work 

in principle – appreciating the need for consistency across input models, as well as highlighting 

points for consideration. 
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2 Executive Summary 

This report details the adaptive input data model groups proposed by Google X, namely: 

Generation, Transmission, Interconnector, DER, and Net Demand (split into actual demand 

and embedded DER modules). 

Headlines 

• With the exception of Transmission, all model areas have the same high-level 

process architecture – training a predictive supervised learning model, with an 

ongoing evaluation and retraining element, to enable testing of scenarios. 

 

• Creating a new “IBM View”, the Transmission models are defined by constraint 

problem type (e.g., Thermal, Generator Stability, Voltage etc.) – analysing the value 

of optimiser-inclusion and acknowledging the nuanced differences in approach. The 

advised problem types for initial inclusion in the optimiser logic based on this 

analysis are: Thermal Constraints, Generator Stability, Voltage, and RoCoF / Inertia / 

Largest Loss. 

• Data availability varies greatly by modelling area (see table below), though there are 

clear instances where multi-year data collection processes are necessary to meet 

the outlined historic data requirements. 

• Data quality and granularity vary by input data source (see table below). For 

example, there are multiple known issues with Data Historian, but no anticipated 

issues with the Transmission model data (in part due to the sophistication of existing 

processes)4. 

• The important holistic view of model interconnectedness and management of 

scenarios can be found in the Architectural deliverable. 

• Discussions around appropriate ownership of these modelling areas are raised 

throughout the report and reflected in the roadmap deliverable. 

The high-level insights drawn from the series of adaptive input data models detailed in this 

report are highlighted in the below table. 

 
4 Note: data has not been able to be extracted for IBM-run data quality analysis. Comments instead 

reflect conversations had with ESO SMEs. 
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Table 1: High-Level Input Data Model Insights 

End 

Vision 

Module 

Input Data 

Model Area 
Core Question 

Data Requirements 

Headlines 
Data Availability Headlines 

Data Quality / Granularity 

Headlines 

A
d

a
p

ti
ve

 I
n

p
u

t 
D

a
ta

 M
o

d
e

ls
 

Generation 

Given a set of dispatch 
instructions to test, combined 
with forecast input data such 
as weather, likely 
maintenance etc., what is the 
predicted actual MW output 
for a specified generator? 

Historic Training Data 

- Generator Offer Data 

- Production Forecast Data 

- Instructed MW output 

- Actual MW output 

- Weather 

- Generator Conditions 

- Total System Demand 

- Binding Transmission Constraints 

- Dispatch State 

Scenario Input Data (Forward-

Looking) 

- Theoretical Dispatch Instructions 

- Existing PNs for given period  

- Generator Offer Data 

- Weather 

- Etc. as above 

• Approx. 3 years of data 

collection in real time 

necessary to meet the 

historic “Additional 

Information” data 

requirements. 

• Data groups required for 

scenario testing are 

generally more available, 

and hence not as restrictive 

to model development as 

the training data. 

Data Historian Issues 

• Muddled data timestamps. 

• No differentiation between out-

of-service and decommissioned. 

• Incorrect flow direction. 

• Untrustworthy static generator 

data. 

• Slow data extraction. 

• Potential sunsetting. 

Lack of data dictionary for Data 
Historian and National Grid 
Economic Database (NED). 

Transmission 

(IBM View) 

Split by constraint problem 
type (e.g., thermal, generator 
stability, voltage etc.), what 
are the forecasted 
transmission constraints to be 
fed into the optimiser 
module? 

For the identified constraint problem 

types (Thermal, Generator Stability, 

Voltage, Rate of Change of Frequency / 

Inertia / Largest Loss), 

- Local Network Characteristics 

- (Dynamic) Line Ratings 

- Generator Characteristics 

- Network Model 

- Fault Understanding 

- Contract Information 

- Weather 

- Network Configuration 

- Generation, Demand, and 

Interconnector Forecasts 

- System Operating Plans 

- Faults 

- Voltage Profile 

- Largest Demand Loss 

- Largest Generation Loss 

• Not subject to the historic 

data availability issues 

observed in other areas. 

• No significant data 

availability issues 

anticipated.5 

• No known significant data quality 

issues. 

• Unknown factors for 

consideration include: the agreed 

quality and granularity of any TO-

produced dynamic line rating 

data, and accuracy / granularity 

of current weather forecasts for 

scenario building. 

 
5 Whilst there may be availability issues with, for example, network sensor data in the TO-owned calculation of dynamic line ratings, these would be 

observed by ESO through the quality / granularity of said ratings – see unknown factors for consideration comment. 
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Interconnector 

Given a prescribed set of 
forecasted scenario 
conditions, what is the 
forecasted actual flow on the 
interconnectors (prior to any 
further required reactive 
manual trading / intervention 
post-optimiser run)? 

Historic Training Data 

- Scheduled interconnector flow 

trends 

- Actual interconnector flow trends 

- GB Market Data 

- Foreign Market Data 

Scenario Input Data (Forward-

Looking) 

- Real-time power flows on 

transmission interconnectors 

- Scheduled interconnector flow 

trends 

- GB Market Data 

- Foreign Market Data 

• Most elements of the 

historic training data are 

available in some form 

(perhaps requiring 

purchase). 

• Whilst some variables are 

readily available, the limited 

forecasting of market 

conditions may lead to 

difficulty in defining 

relevant, accurate 

scenarios. 

• Actual interconnector flow of 

good quality / granularity. 

• Forecasted market data 

considered poor quality and 

accuracy. 

Further Considerations 

• Granularity of historic scheduled 

flows.  

• Usability of historic market data. 

DER 

Given a set of dispatch 
instructions to test, combined 
with forecast input data such 
as weather, likely 
maintenance etc., what is the 
predicted actual MW output 
for a specified resource / 
aggregated resource group? 

Historic Training Data 

- DER / DER Group Offer Data 

- Production Forecast Data 

- Instructed MW output 

- Actual MW output 

- Weather 

- Resource Conditions 

- Total System Demand 

- Binding Transmission Constraints 

- Dispatch State 

Scenario Input Data (Forward-

Looking) 

- Theoretical Dispatch Instructions 

- Existing PNs for given period 

- DER / DER Group Offer Data 

- Weather 

- Etc. as above 

• Approx. 3 years of data 

collection in real time 

necessary to meet the 

historic “Additional 

Information” data 

requirements. 

• Data groups required for 

scenario testing are 

generally more available, 

and hence not as restrictive 

to model development as 

the training data. 

As for Generation above. 

N
e

t 
D

e
m

a
n

d
 

F
o

re
ca

st
 

M
o

d
u

le
6
 Demand 

Forecast and 

Consumer 

Behaviour 

Given a set of fixed inputs 
(e.g., day of week, time of day 
etc.), combined with forecast 
input data such as weather, 
market prices etc., and the 
existing demand forecast, 

Historic Training Data 

- Demand Forecasts 

- Actual Demand 

- Demand Flexibility Service 

instructions 

- Weather 

- Market Prices 

[Unable to obtain SME input.] [Unable to obtain SME input.] 

 
6 Note that, with this view, demand modelling is split into actual (gross) demand and embedded DER, with net demand calculated as the difference between 

these values. This approach vs. direct modelling of net demand is discussed in section 6.1. 
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what is the predicted actual 
demand at the chosen level of 
granularity? 

Scenario Input Data (Forward-

Looking) 

- Demand Forecasts 

- Demand Flexibility Service 

instructions 

- Weather 

- Market Prices 

Embedded DER 

What is the amount and type 
of embedded DER at a given 
level of granularity, and what 
is the subsequent impact on 
net demand? 

Dependent on 

methodology – see 

discussion in section 6.4. 

N/A N/A 

 

Distilling this information further to identify key data challenges and immediate actions: 

Table 2: Data Challenges and Next Steps Summary 

End 

Vision 

Module 

Input Data Model 

Area 
Key Data Challenges Immediate Actions 

A
d

a
p

ti
ve

 I
n

p
u

t 
D

a
ta

 M
o

d
e

ls
 

Generation 

Availability 

Quality 

• Planning of real-time data collection period where required (e.g., generator conditions, 

total system demand, binding transmission constraints etc.). 

• Full analysis of quality and granularity issues (e.g., Data Historian, NED, weather data). 

Transmission 

(IBM View) 

Availability 

Quality 

 

• Discussion with TOs regarding the ownership, format, and required frequency of dynamic 

line ratings. 

• Full analysis of quality and granularity issues (e.g., accuracy / granularity of current 

weather forecasts for scenario building ). 
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Interconnector 

Availability 

Quality 

 

• Detailed analysis of data sources (some requiring purchase) to establish whether 

granularity and quality are sufficient for this purpose (e.g., timescales of “scheduled 

flows”, ability to forecast market data in the creation of scenarios). 

DER 

Availability 

Quality 

 

As for generation: 

• Planning of real-time data collection period where required (e.g., generator conditions, 

total system demand, binding transmission constraints etc.). 

• Full analysis of quality and granularity issues (e.g., Data Historian, NED, weather data). 

N
e

t 
D

e
m

a
n

d
 

F
o

re
ca

st
 M

o
d

u
le

 

Demand Forecast 

and Consumer 

Behaviour 

[Unable to obtain SME 

input.] 
• Initial availability and quality analysis (as completed for the other modelling areas). 

Embedded DER 

Dependent on 

methodology – see 

discussion in section 6.4. 

N/A 
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3 Regulatory Considerations, Explainable AI, and Process Impacts Overview 

3.1 Explainable AI and Associated Regulatory Considerations 

3.1.1 Overview 

National Grid ESO’s role within the UK’s electricity landscape requires an inherent level of transparency and explain-ability. Acknowledgement 

of this responsibility was seen, for example, in the publication of datasets as part of the Forward Plan commitment to increase the 

transparency of the Balancing Mechanism operational decision making. These publications included a list of actions, explanations of the 

underlying reasons, as well as an overall process methodology document. 

These areas become even more important as ESO shifts to increased levels of Artificial Intelligence (AI) adoption and AI augmented decision 

making. For example, one would need to be able to justify an AI-generated decision to not issue dispatch instructions to the lowest price unit 

(perhaps due to historical discrepancies between Bid Offer Data and actual performance). Considerations in this particular AI-generation area 

extend further to include contractual elements – e.g., should new market participants be informed of the various unit-level metrics feeding 

into the optimiser, and therefore determining their usage? 

Whilst this section provides a high-level overview, and is included here for completeness, model-specific elements of Explainable AI will be further discussed in the relevant 
areas of section 5
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Adaptive Input Data Models below. 

3.1.2 Explainable AI Principles 

The field of Explainable AI (XAI) is defined at a high-level as  

“a set of processes and methods that allows human users to comprehend and trust the 

results and output created by machine learning algorithms”.7 

As further noted, “Explainable AI is used to describe an AI model, its expected impact and 

potential biases. It helps characterize model accuracy, fairness, transparency and 

outcomes in AI-powered decision making. Explainable AI is crucial for an organization in 

building trust and confidence when putting AI models into production.” 

“There are many advantages to understanding how an AI-enabled system has led to a 

specific output. Explain-ability can help developers ensure that the system is working as 

expected, it might be necessary to meet regulatory standards, or it might be important in 

allowing those affected by a decision to challenge or change that outcome.” 

With regards ESO, the necessity for XAI-style thinking covers all of the above listed points. 

It would enable any regulatory requirements to be met, as well as provide control room 

engineers with a clear view of the underlying reasoning so that they can take appropriate 

action.  

3.1.3 Explainable AI Techniques 

As detailed again by IBM,  

“The setup of XAI techniques consists of three main methods. Prediction accuracy and 

traceability address technology requirements while decision understanding addresses 

human needs. Explainable AI — especially explainable machine learning — will be essential 

if future [control room engineers] are to understand, appropriately trust, and effectively 

manage an emerging generation of artificially intelligent machine partners.” 

Exploring each of these in turn: 

Prediction Accuracy 

“Accuracy is a key component of how successful the use of AI is in everyday operation. By 

running simulations and comparing XAI output to the results in the training data set, the 

prediction accuracy can be determined. The most popular technique used for this is Local 

Interpretable Model-Agnostic Explanations (LIME), which explains the prediction of 

classifiers by the ML algorithm.” 

Traceability 

“Traceability is another key technique for accomplishing XAI. This is achieved, for example, 

by limiting the way decisions can be made and setting up a narrower scope for ML rules and 

features. An example of a traceability XAI technique is DeepLIFT (Deep Learning Important 

 
7 https://www.ibm.com/topics/explainable-ai 

https://www.ibm.com/topics/explainable-ai
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FeaTures), which compares the activation of each neuron to its reference neuron and shows 

a traceable link between each activated neuron and even shows dependencies between 

them.” 

Decision Understanding 

“This is the human factor. Many people have a distrust in AI, yet to work with it efficiently, 

they need to learn to trust it. This is accomplished by educating the team working with the 

AI so they can understand how and why the AI makes decisions.” 

Whilst all three of these methods are important and are inherently interconnected, as 

alluded to above, Decision Understanding is arguably the most critical for ESO. 

3.1.4 Explainable AI Benefits 

Whilst many of the benefits of XAI adoption are clear, they can be concisely summarised as: 

1. Operationalise AI with trust and confidence 

Build trust in production AI. Rapidly bring your AI models to production. Ensure 

interpretability and explain-ability of AI models. Simplify the process of model 

evaluation while increasing model transparency and traceability. 

2. Speed time to AI results 

Systematically monitor and manage models to optimise business outcomes. 

Continually evaluate and improve model performance. Fine-tune model 

development efforts based on continuous evaluation. 

3. Mitigate risk and cost of model governance 

Keep your AI models explainable and transparent. Manage regulatory, compliance, 

risk and other requirements. Minimise overhead of manual inspection and costly 

errors. Mitigate risk of unintended bias. 

3.2 Process and Responsibility Impacts 

In reading the Google X End Vision8, it is abundantly clear that implementation of an 

adaptive model architecture of this type would require significant changes to existing 

processes and employee responsibilities. As such, this should be a fundamental 

consideration in planning the speed and incremental approach for both development and 

business integration stages. 

Indeed, as noted by an ESO Operational Manager in their assessment of the Google X 

report9,  

“Moving to this kind of model is likely to impact most members of the Energy, Strategy and 

Transmission teams and many of their processes. This will be a different toolset and 

different process for the whole Energy team with different optimisation opportunities that 

will have to be learnt. The document does not mention scheduling process which is mainly 

 
8 Google X Tapestry’s Advanced Dispatch Optimizer System Roadmap Report 
9 Virtual Energy System - Advanced Dispatch Optimiser Google X Comparison (April 2022) 
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managed by the Strategy but they will likely be responsible for setting up the dispatch 

tools.” 
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4 Adaptive Model Considerations, Advised Incremental 

Approach, and Cone of Uncertainty 

4.1 Adaptive Models 

4.1.1 High-Level Origin and Definition 

The field of Adaptive Machine Learning (ML) was established to address the issue of 

“concept drift” – a phenomenon in which the underlying distributions of input data shift 

over time, resulting in altered relationships between the input and target variables. A 

traditional ML trained model would therefore become “out of date” in this case due to the 

underlying usage assumption that the training data remains generally representative of the 

wider population. 

At a high level, adaptive ML models counter this issue through continuous adaption to 

rapidly changing data sets. As such, they are particularly well suited to real-time, real-world 

environments. 

4.1.2 Definition within the ESO Context 

At a slightly more technical level, the actual definition of adaptive ML may vary depending 

on use case. For purposes of this report, an adaptive ML model is defined as any model with 

a continuous improvement and automated retraining element. This may take the form of a 

supervised or unsupervised traditional ML model with ongoing retraining module built into 

the architecture, or a form of efficient reinforcement learning akin to a continuous learning 

trial-and-error approach. 

4.1.3 Considerations 

In considering use of an adaptive ML model, particularly comparatively to traditional ML 

with manual retraining, there are several points for consideration in answering the core 

question 

“Is the costly development and deployment of an adaptive model worth it for the given 

problem?”. 

These considerations may include: 

• the underlying data relationships, 

• pace of concept drift, 

[both looking at the technical suitability of the problem] 

• associated incremental value gain. 

[exploring the business merit of development] 
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4.1.3.1 Underlying Data “Structures” 

An important consideration in deciding whether to develop an adaptive model is whether or 

not there is sufficient “structure” in the underlying data. By this, we are referring to the 

intrinsic relationships between the data variables that a ML model exploits to form its 

output. 

Failing this “sufficient structure”, in a resultant system of high entropy dynamics, the 

incremental value gain from implementing an adaptive-type model (as opposed to 

traditional ML or other processes) is low or non-existent. This is because the model, as 

expected, would be unable to accurately predict a system dictated by “significant 

randomness”. 

It is also worth noting that the perception of randomness within a system could be the 

result of missing core data sources. For example, if one were trying to predict GB nuclear 

power generation but only had temperatures in Australia as available data inputs, any 

defined relationship between data inputs and the target would appear arbitrary and 

inaccurate. The perception of the system dynamics would subsequently be one of 

“complete randomness”. 

4.1.3.2 Shifting of Data Distributions (Concept Drift) 

As alluded to above in describing the origins of adaptive ML, a further consideration centres 

around the pace at which the underlying data relationships are changing. With fast changing 

data, adaptive models may well be ideal for the given use case. Conversely, if the data 

distributions are relatively stable, one may question the level of additional value gained 

from the likely long and expensive development and deployment of an adaptive model.  

4.1.3.3 Emergence of New Significant Variables 

Related to concept drift, drastic changes to the general environment could lead to the 

emergence of new vectors that impact the target variable. Whilst concept drift perhaps 

implicitly focuses on the movement of existing, known input parameters, this additional 

consideration describes a fundamental change / disruption to the dynamics of the system. 

As one might expect, these drastic changes are likely to be relatively infrequent and less of 

a concern when considering the use of an adaptive model. However, in a rapidly changing 

environment, this may present an issue. 

4.1.3.4 Associated Incremental Value Gain 

As mentioned, regardless of whether the problem suits an adaptive-type solution, the wider 

question of “should the business implement such a solution?” remains. Assuming there are 

no data issues such as those highlighted above, the answer to this is a function of 

incremental value, associated cost, and business requirement. As always, there is a balance 

to be struck between cost of development and value gain relative to business requirements. 

If, for example, more value would be gained from improving metering data than developing 

an adaptive model, money may be better spent there.  
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4.2 Advised Incremental Approach and Cone of Uncertainty 

Again, we consider the key question 

“Is the costly development and deployment of an adaptive model worth it for the given 

problem?”. 

The answer to this may obviously vary by individual input data model stream. To address 

the above considerations (particularly considering the level of upheaval that the adaptive 

vision presents to existing processes), an incremental stepwise approach is advised. Such a 

stepwise approach to the input data models would support continuous improvement, 

reduce the uncertainty around associated value at each stage, inform best next steps, and 

avoid regret spend. 

Forming a view of this recommended approach, a useful visualisation depicting the 

principle is the “Cone of Uncertainty”. By taking a stepwise approach, evaluating the 

business value at each stage, one can make a series of informed decisions as to:  

1. whether the subsequent stage is worth undertaking (based upon likely incremental 

business value, suitability of data etc.), 

2. what the most suitable definition / specification of said subsequent stage would be.  

Conversely, if one were to jump immediately to the adaptive “final capability”, there is 

currently a great degree of uncertainty surrounding the suitability of the problem, 

anticipated value gain, “correct” specification etc. This could result in significant regret 

spend (both time and monetary) if a much simpler solution would have produced 

comparable (or even better) results. The advised approach gradually removes this 

uncertainty. 

Starting with development of a set of “Minimum Viable Models”, the value relative to 

current processes can be quickly quantified (in terms of accuracy, ease of use etc.). 

Combining these results with the outcomes of a parallel data science workstream, this can 

inform the most important next steps of development. 

4.2.1 Data Science Workstream 

A data science workstream running in parallel to model development would aim to answer 

the considerations above regarding underlying data “structures”, likely speed of concept 

drift / variable emergence, and associated model value. Activities may include detailed 

correlation analysis, historic data distribution drift and projected future drift analysis, model 

suitability study, and value calculation / approximation. 

The outputs of this workstream would address the considerations above and inform 

decisions as to the most sensible next step of development – both in terms of next step 

definition, and next step go / no go decision making. 
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Figure 3: Adaptive Input Data Models Stepwise Approach and "Cone of Uncertainty"
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5 Adaptive Input Data Models 

This section aims to outline each of the Adaptive Input Data Models considered within the 

scope of this work. Detailing these individually, they are treated here as separate, siloed 

components, each with a distinct capability. The way in which these model types could 

interact and fit together practically can be found within the Architectural deliverables 

(separate to this report). 

5.1 Adaptive Generation Models 

5.1.1 Overview 

The Adaptive Generation Models described by Google X Tapestry in the output document 

Advanced Dispatch Optimizer System Roadmap Report are split into two core categories: 

1. Thermal generation, 

2. Grid scale renewable generation. 

[Clarification from Google X suggests that grid scale duration limited assets, such as 

batteries and pumped storage, are also included within this model group, whilst, for 

example, smaller instructible batteries connected at the distribution level and participating 

in the markets are considered as part of the DER Adaptive Input model. These grid scale 

duration limited assets can generally be modelled in a similar way to the explicitly listed 

thermal and renewable generator types with regards high-level process and scenario 

testing capability. Footnotes are used to highlight any specific duration limited asset 

considerations.] 

For each of these categories, the overall model purpose is “to correct, enhance and create 

generation input data” for the optimiser module. This purpose translates into two primary 

outputs: 

• Probabilistic scenario testing capability to forecast the likely response to given 

dispatch instructions, 

• Correction / validation of held static data (e.g., Megawatt (MW) limits, ramp rates). 

The core functionality centres around the scenario testing capability, with the improvement 

of held static data being a useful secondary output. When viewed through a holistic 

architectural lens, the scenario-based approach provides consistency across the model 

types and enables coherent testing of output sensitivity to conditions (see Architecture 

deliverable). Further, whilst it is noted that market participants should generally be 

providing accurate technical parameters, the correction / validation will catch any 

discrepancies in performance.   

The detail around this specification is given in the “Required Final Capability” section 

below, with particular focus on the scenario testing capability and associated options. 

Note: For context, the decentralised architecture of VirtualES supports the aim for unit level 

modelling explored in this section. Aggregation to the required spatial level would then be 

possible to attach to points on the power system model.  
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The generation model sections below aim to outline some of the current and planned 

generation forecast capabilities, detail the final vision (highlighting any decision points for 

consideration), and discuss some comparative gaps. [Note: The main As-Is analysis and 

gap analysis sit within a different deliverable but relevant data points are discussed here.]  

5.1.2 Existing and Planned Capabilities 

[See As-Is deliverable for full overview.] 

There are currently various existing capabilities relating to the planned generation input 

data models. Whilst none of these constitute the adaptive-type input model outlined in the 

end vision documentation, they are important in understanding current processes and 

associated data. Below is an overview of some relevant elements but, as noted above, the 

true As-Is analysis sits separately to this report, and as such the below is far from 

exhaustive. 

5.1.2.1 Overview 

Forecasted generation values are critical inputs in both the Legacy Dispatch Adviser (LDA) 

and Modern Dispatch Adviser (MDA). Whilst the full specification of these optimisers is not 

included here, a brief description is provided below: 

The LDA utilises Linear Programming (LP) techniques whilst the MDA uses more advanced 

Mixed Integer Linear Programming (MILP) techniques to output the dependent variables 

advised power and advised response. They then compute optimal values for meeting 

forecast demand and forecast response requirements, subject to constraints. 

With specific reference to generation data, the independent variables input into these 

optimisers include Capped Committed Level (CCL) for conventional units and FX (Forecast 

power) for windfarms. These input variables are a defined set of expected future values of 

CCL and FX, calculated as follows: 

• CCL = Unit’s declared Physical Notification (PN), as modified by any Bid Offer 

Acceptances (BOAs); fixed, no modelling required. 

• FX = Derived value combining medium-range wind forecasts (from Energy 

Forecasting System (EFS) / Platform for Energy Forecasting (PEF)) with recent 

metered values of wind power (by the Wind Metered Power (WiMP) program within 

BM-SORT) – see detail below. 

5.1.2.2 EFS / PEF Generation Capability 

The Energy Forecasting System (EFS), gradually being replaced in functionality by the 

Platform for Energy Forecasting (PEF), covers multiple areas. 

At a high level, PEF focuses on four core products (not all relating to generation): 

1. National demand forecast, 

2. Wind power generation forecast, 

3. Solar power (Photovoltaic; PV) generation forecast, 

4. Grid supply point (GSP) forecast for demand, solar, and wind. 
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Machine Learning models are used for the GSP and PV generation products, and a similar 

model for wind generation is also under construction. Current approaches are generally 

deterministic (outputting a single, fixed solution per run) and provide a set of forecast 

variants (minimum, maximum and average). PEF feeds into BM-SPICE, which subsequently 

feeds into BM-SORT. 

5.1.2.3 AMIRA 

AMIRA is a third-party tool used by the control room to forecast metered wind generation 

and the associated error probabilities. None of the outputs feed into any other systems in 

the control room, with elements being manually typed over by the OEM. Feedback suggests 

that AMIRA provides a consistently more accurate forecast than PEF. 

5.1.2.4 Deep Dive: Wind Forecast Process – Blending 

Given the particularly high level of uncertainty observed in wind forecasting, this section 

provides a more detailed deep dive. 

As mentioned, optimiser input windfarm forecasts take the form of an FX (Forecast power) 

value. This value is calculated by passing wind power forecasts from PEF / EFS via SPICE 

through a “blending” function within WiMP to incorporate a recent metered value. 

 

Figure 4: High-level view of wind FX value derivation 

The wind forecasts from PEF / EFS are supplied as a set of three variants (expected, 

minimum, and maximum) into BM-SORT. This gives a more detailed view than a single 

variant, effectively providing ranges of potential forecasts (low, medium, high) to mitigate 

the inherent uncertainty in the value. 

The “single recent” metered value used within the WiMP program is either power output 

(MO) or power available (PA). PA is a measure of the power that a windfarm would produce 

were it not instructed to a lower level by a BOA. As such, when a windfarm is not in a BOA, 

PA and MO should be approximately equal. 

As well as running the “blend” function, the output of the WiMP program also supports 

manual decision making by control room engineers, giving options to: 

• Select which forecast to use (low, medium, high), 

• Decide whether or not to use the PA signal. 
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Methodology Considerations 

During discussions held as part of this engagement, there were several concerns raised by 

ESO SMEs around the accuracy and usability of the above-described method. As indicated, 

the “blending” process uses only a single recent meter reading. The stochastic nature of 

wind power means that this may lead to significant forecasting errors. Concerns generally 

fall into the following categories: 

• Blending when in a BOA, 

• Trending, 

• Gusting. 

Blending when in a BOA 

One error type specifically arises when a unit without a PA meter is in a BOA. This causes 

the metered value, and hence the forecast power for the unit as used by dispatch, to be 

incorrect. A correction that has been proposed (but is yet to be implemented) is instead 

using the last metered value before the BOA – i.e., taking a value that was independent of 

the BOA instructions. 

Trending 

Trending describes a situation in which the “single most recent value” measure (MO or PA) 

is taken during a notable increasing or decreasing trend in wind speed. As a result, this 

single value will be highly unrepresentative of the actual wind power over the following 

hours. Trending is considered to be one of the main sources of error in both MO-blended 

and PA-blended forecasts. 

 

Figure 5: Example of how trending can lead to unrepresentative forecasts 

Gusting 

Gusting refers to a situation in which the spot value is taken during a wind transient 

(sudden brief rise or fall). Consequently, said measured value is not representative of the 
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average, leading to errors in forecast. Whilst discussions with control room engineers have 

indicated that trending is the bigger issue, gusting also contributes to forecasting error. 

 

Figure 6: Example of how gusting can lead to unrepresentative forecasts 

With regards gusting and trending, there have been several, relatively simple, possible 

mathematical solutions proposed by ESO SMEs. These include: 

• Rolling average of wind power over past 𝑥 minutes, for specified 𝑥 (would deal better 

with gusting than trending), 

• Fitting a rolling straight line to the past 𝑥 minutes of metered wind power (order 1 

polynomial), 

• Fitting a rolling quadratic polynomial to the past 𝑥 minutes of metered wind power 

(order 2 polynomial, accounting for constant non-zero second derivative), 

• Fitting of either a straight line or quadratic polynomial, weighting towards more 

recent values. 

Based upon current understanding, it is recommended that this style of solution be 

implemented, regardless of future vision and steps towards the final capability.  

5.1.3 Required Final Capability 

The required final capability discussed below interprets the description provided in Google 

X Tapestry’s Advanced Dispatch Optimizer System Roadmap Report, providing a much 

greater level of detail, and highlighting arising decision points / considerations. 

Each type of generator model (thermal, renewable, and grid scale duration limited assets) 

aims to provide, for each generator, a half-hourly10 view of expected actual output (in MW) 

under a given set of hypothetical dispatch instructions. In other words, the model aims to 

answer the question: 

 
10 Half-hourly is the minimum temporal granularity required. Interpolating for shorter steps within 

the dispatch process would likely provide further beneficial insight. 
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Given a set of dispatch instructions to test, combined with forecast input data such as 

weather, likely maintenance etc., what is the predicted actual MW output for a specified 

generator?11 

The below figure provides an initial high-level view of the required (supervised) model 

creation and scenario testing process. 

[Note: Whilst the high-level overall process is identical, the differences in consideration 

between, for example, thermal and renewable generators are discussed below.12] 

 

 
11 Feedback suggests that a more appropriate question could focus on prediction of unit output 

before the instruction, as opposed to after (with units generally expected to deliver when instructed, 

and uncertainty arising from, for example, accuracy of wind unit PNs). Theoretically, this model type 

could answer both questions given the similar underlying data requirements, with the pre-instruction 

predicted output tested for relevant timeframes via a “blank” instruction. The need for the additional 

“dispatch behaviour” element outlined by Google X is therefore open to debate.  
12 For example, a valid point raised is whether or not a Machine Learning model is required for all 

generators – e.g., a nuclear generator always instructed to provide constant base load with little 

impact from external factors. 
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5.1.3.1 Overview 

 

Figure 7: Generation Models – Overall High-Level Process Flow for Training and Scenario Testing 
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[Note: Feedback suggests that this outlined process is similar in principle to the PEF 

Machine Learning models, though their blended output is deterministic.] 

Briefly describing these stages: 

Training Input Data 

The set of historical (labelled) data that is used to train the Machine Learning model in 

question. Utilising this data, the model learns how the different variables relate to the 

intended target being predicted, in this case the actual MW output (see section “Data 

Requirements Overview” for more detail). 

Data Quality / Correlation Analysis 

This crucial first step evaluates the quality, format, and inter-relationships of variables in 

the available training data. The outcomes of the analysis help inform the usability of the 

data as well as dictate necessary Pre-Processing steps. 

Pre-Processing Logic 

Logic implemented here cleans and transforms data such that it can be used in the chosen 

model. As indicated, steps may include, but are not limited to: 

• Data Cleaning 

• Missing Data Handling 

• Feature Selection 

• Data Transforms 

• Feature Engineering 

• Dimensionality Reduction 

Model Training 

The model in question uses supervised learning techniques to predict the actual half-hourly 

MW output for a generator under given dispatch instructions. Training on the processed 

data will output the trained model for scenario testing use. 

[Note: This model could use a Regression or Classification algorithm (though more likely 

Regression) – see discussion below.] 

Ongoing Evaluation and Retraining through Continuous Stream of Data (Adaptive) 

The purpose of Adaptive Machine Learning models (as opposed to Traditional Machine 

Learning) is to react to changing data sets, utilising real-time data to “adapt” and more 

accurately represent real-world situations. As such, there is an element of continuous 

improvement. 

Performance Evaluation Metrics 

Such metrics are particularly important in supporting the ongoing evaluation and retraining 

element at the heart of adaptive modelling. Difficulties in, for example, defining the correct 

target metric mean that evaluation metrics contribute to problem structure and definition in 

addition to hyperparameters etc. 
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Depending on whether a Regression or Classification algorithm is chosen for this problem, 

there are different evaluation metrics which will be critical in assessing the quality of the 

model and tuning of hyperparameters during the training stage. Example metric types 

include: 

Classification 

• Accuracy 

• Precision 

• Recall 

• F1-Score 

Regression 

• Mean Squared Error (MSE) 

• Root Mean Square Error (RMSE) 

• Mean Absolute Error (MAE) 

Scenario Input Data 

The set of input data to run the trained model on. This includes both forecasted dependent 

variables as well as the specific dispatch instructions to test (see section “Data 

Requirements Overview” for more detail). 

Probabilistic Output 

The output of the model’s scenario testing capability. Considerations around the form of the 

model output, as well as the final output from potentially running multiple scenario tests to 

account for uncertainty in the forecasted input variables, are discussed at length in sections 

“Modelling Approach Considerations” and “Scenario Testing Capability and Output”. These 

sections explore the possibilities of probabilistic base models (as opposed to point 

estimates) and probabilistic outputs from scenario testing13. 

5.1.3.2 Data Requirements Overview 

Within the process flow shown, data requirements can broadly be split into two categories: 

Historic Training Data and Scenario Input Data. Potential data sources are discussed in the 

data availability section. 

For completeness in a single view, data variables listed below under Historic Training Data 

and Scenario Input Data cover the requirements for all generator types. In practice, certain 

variables are more relevant for particular generator types than others. For example, 

weather data is primarily associated with renewable generators and will likely have a 

comparatively insignificant impact on thermal generator output14. 

 
13 As noted previously, when viewed through a holistic architectural lens, the scenario-based 

approach provides consistency across the model types and enables coherent testing of output 

sensitivity to conditions (see Architecture deliverable). 
14 Note: there is evidence that temperature affects the ramp up rates of thermal generators. 
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Historic Training Data 

Training data refers to the set of historical (labelled) data that will be used to train the first 

iteration of the model. Said training data will later be updated over time in line with a 

defined re-training schedule. 

The training data for these models consists of, for each generator in question, Historical 

Generator Data (i.e., What has happened previously with regards expected vs. actual 

generator outputs within the Balancing process?) and Additional Information for correlation 

tests (i.e., What external factors may account for any discrepancy observed in expected vs. 

actual output?).  

Table 3: Generation Models – Training Data 

Category Data Description Frequency Total Time 

H
isto

ric
a

l G
e

n
e

ra
to

r D
a

ta
 

Generator 

Offer Data 

Generator BOAs, Bid Offer 

Data (BOD), including 

increase / decrease limits 

and associated prices. 

Half-hourly (for 

each dispatch 

interval) 

At least 1 

year 

(Tapestry 

minimum), 

preferably 

approx. 3 

years (IBM 

view). 

Production 

Forecast 

Data15 

Generator forecast output 

figures over time (including 

PNs, Final Physical 

Notifications (FPNs)). 

Half-hourly (for 

each dispatch 

interval) 

Instructed 

MW output 

Instructed MW output by 

generator over time. 

Half-hourly (for 

each dispatch 

interval) 

Actual MW 

output 

Actual MW output by 

generator over time. 

Half-hourly (for 

each dispatch 

interval) 

A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 
Weather 

Weather data for each 

generator location 

(temperature, precipitation, 

UV levels, wind speed etc.). 

Half-hourly 

profiles 

Generator 

Conditions 

Generator conditions over 

time, including maintenance 

activities (both planned and 

unexpected outages). 

Ad-hoc 

Total System 

Demand 

Total system demand over 

time. 
Half-hourly 

Binding 

Transmission 

Constraints 

All active constraints over 

time (both planned and 

unexpected). 

Ad-hoc 

Dispatch 

State 

Dispatch state by generator 

over time (e.g., ramping up, 
Ad-hoc 

 
15 In the case of grid scale batteries and pumped storage, this input is assumed to include associated 

“state of charge” data. 
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holding etc.) – to understand, 

for example, ramp-up rates. 

 

As hinted at in the above table, the total historic timeframe that constitutes “sufficient” 

data for training is, at this stage, indeterminate. Tapestry correctly notes that there is a 

balance to be struck between model accuracy and data gathering complexity. As such, it is 

important to remember that further re-training will be continuous as more data is collected, 

thus improving the accuracy of the model. 

Scenario Input Data 

Scenario Input Data here refers to the set of information fed into the trained model to 

produce the probabilistic output desired. What the model requires as input is a set of 

forecasted data covering all the previously defined “Additional Information” variables 

(forecasted for the given timeframe in question), as well as the particular dispatch scenario 

to be tested. 

In other words, for the given future time in question, the model input data consists of, for 

each generator, Scenario Dispatch Data (i.e., What set of dispatch lever options are we 

looking to understand the impact of?) and Forecasted Additional Information (i.e., How do 

we expect the factors affecting dispatch response to be behaving over the time in 

question?). 

Table 4: Generation Models – Scenario Input Data 

Category Data Description Time 

S
c

e
n

a
rio

 D
isp

a
tch

 D
a

ta
 

Theoretical 

Dispatch 

Instructions 

Set of potential dispatch instructions to be 

tested in the model. 

Given 

future 

time 

period in 

question. 

Existing PNs for 

given period16 

Existing generator PNs for the time period 

being considered. 

Generator Offer 

Data 

Available Generator Bid Offer Data (BOD), 

including increase / decrease limits and 

associated prices. 

(Relevance dependent on when the model is 

being run relative to the period in question.) 

F
o

re
ca

ste
d

 A
d

d
itio

n
a

l 

In
fo

rm
a

tio
n

 

Weather 

Weather data for each generator location 

(temperature, precipitation, UV levels, wind 

speed). 

Generator 

Conditions 

Generator conditions over time, including 

maintenance activities (both planned and 

unexpected outages). 

Total System 

Demand 
Total system demand over time. 

 
16 Again, for grid scale batteries and pumped storage, this input is assumed to include associated 

“state of charge” data. 
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Binding 

Transmission 

Constraints 

All active constraints. 

Dispatch State 
Dispatch state changes by generator over 

time (e.g., ramping up, holding etc.). 

 

[Note: Given the number of variables, the scenario definition process itself could exist as a 

separate problem. Management of this is briefly discussed in the below section “Scenario 

Testing Capability and Output”, as well as within the Architecture deliverable.] 

5.1.3.3 Data Models 

Further, the below logical entity-relationship diagrams provide a view of how both the 

scenario input data sources, and separately the training data sources, could relate and be 

structured.17 

 

Figure 8: Generation Models – Example view of data model for scenario input data sources 

This model exemplifies the relationships between the different data sources and provides a 

practical view as to one way the end vision data structures could be realised. In this sample 

 
17 See section 7 for overview of entity-relationship notation. 
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structure, the hypothetical dispatch instructions to be fed into the scenario testing 

capability can be linked via different keys to the other model input data. 

As an example, the dispatch scenario instructions to test within the generation models are 

linked via a key to the specific generator ID and time interval being trialled. Shown by the 

connection types in the above diagram, each set of instructions will join to precisely one 

Generator / Time Interval combination key, whilst each such key may link to multiple trial 

instructions. The generator ID can then be further used to gather information such as 

location (at required level of granularity) to link weather forecasts etc. 

Similarly for the listed historic training data: 

 

Figure 9: Generation Models – Example view of data model for training data sources 

Overall, a schema of this type would integrate seamlessly with the final vision model, 

assuming any technical constraints are not limiting. 

5.1.3.4 Modelling Approach Considerations 

A major decision point in writing a full specification for these sets of models would be 

defining the modelling approach. The “correct” modelling technique is dependent on the 

input data, desired output format, and intended model usage. 

In selecting a modelling methodology for this supervised learning problem, two core 

questions arising are: 
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• Should this be treated as a regression or classification problem?18 

• Is the desired model output deterministic or probabilistic?19 

[Note: The model output type for a single iteration does not necessarily equal the 

final output type for the given use case following multiple scenario tests (see 

Scenario Testing Capability and Output).] 

Regression vs. Classification Definitions 

Regression and Classification are both types of Machine Learning problem, crucially 

differing in high-level approach and output.  

A regression model aims to predict a continuous value by understanding the underlying 

relationships between this continuous target variable and numerical input data. Common 

regression algorithms include Simple Linear Regression, Multiple Linear Regression, and 

Polynomial Regression. 

Classification models instead predict assignment to a set of discrete (discontinuous) output 

groups by mapping across from input variables (not necessarily numeric). Common 

classification algorithms include Decision Tree Classification, Random Forest Classification, 

and K-Nearest Neighbour. 

Deterministic vs. Probabilistic Definitions 

A “deterministic” model would produce for example, for each generator, a “single value” 

predicted actual output for each half-hour interval given a set of input conditions. This 

model would always produce the same output for a specified set of inputs. [Note: This 

“single value” could take the form of a number (regression) or group (classification).] 

In contrast to a “single value” output deterministic model, a “probabilistic” model 

incorporates randomness to produce a distribution of outputs. As a result, one is able to 

incorporate confidence intervals into decision-making. 

Considerations for Generation Input Data Models 

As referenced above, this decision around modelling methodology depends on the form of 

input data, the desired output format, as well as more generally the planned business use 

of the model. 

 
18 This is informed in part by whether or not the related time-series data is numerical / continuous. 
19 Depends on the underlying level of forecast uncertainty and intended usage. 
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Figure 10: Generation Models – Matrix of modelling techniques 

This distinction between methods is relatively high-level and generic to give a broad 

overview of the differences and considerations that feed into a decision. The practical 

differences between these methods are widely documented and hence only discussed 

briefly here.  

Some of the factors to consider are highlighted below. 

Algorithm Type Pros Cons 

Regression 

• Clearly understood and 

interpretable numerical 

prediction for actual 

output for each half-hour 

interval. 

• Potential need for one-

hot-encoding or other 

data transformations for 

numerical input. 

Classification 

• Choice of either 

numerical buckets or 

categorical output. 

• Freedom of definition of 

categorisation. 

• Not as relevant and 

interpretable for 

numerical predictions. 

• Less clear as to how 

output will inform 

optimisation. 

 

Model Type Pros Cons 

Deterministic 
• Simplicity and 

understandability of 

single value output. 

• May not provide the 

breadth of insight 

required. 

Probabilistic 

• Detailed output, providing 

a more holistic view of 

the problem by giving an 

idea of confidence 

intervals, etc. – 

particularly useful for 

problems with a high 

• May require more 

manipulation of output to 

integrate with 

optimisation modules 

(dependent on optimiser 

design). 
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degree of underlying 

uncertainty. 

Whilst there is no “correct” answer in considering these options, and all factors should be 

considered carefully when deciding, the desired output most likely points towards a 

regression-style problem. 

5.1.3.5 Scenario Testing Capability and Output 

Depending on the choice of modelling approach (see above) and the desired final output 

format, there are several different process-run options to consider. 

Deterministic Model, Running a Single Scenario to Output the Single “Most Likely” 

Response 

By far the simplest option involves running a single scenario through a deterministic model, 

thus outputting a “single value” response that can be fed into the optimiser modules as 

required. The forecasted input data for the time period in question would represent the 

“most likely” scenario. 

Deterministic Model, Running Scenario Testing over the Input Data Parameter Space 

A probabilistic-style output could be produced from a deterministic model by running a 

multitude of different scenarios through the model to gain an idea of sensitivity to 

forecasted input conditions. This would likely be achieved by running scenarios over a 

defined input data parameter space. 

For example, such a parameter space for the forecasted variables at a generator location 

(for a given time period) could be constructed with either discrete values or probability 

distributions as: 

Table 5: Generation Models – Example parameter space for scenario testing 

Category Data Type Parameter 
e.g., Discrete 

Range 
e.g., Distribution 

F
o

re
ca

ste
d

 A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 

Weather 

Temperature (°C) [16, 17, …]  𝑇 ~ Ν(18,4) 

Wind speed (mph) [10, 12, …]  𝑣 ~ Γ(15,1) 

UV Index [3, 4, …] 𝜗 ~ Γ(7.5,1) 

Etc.   

Generator 

Conditions 

Active Maintenance 

Boolean 
[0, 1] 𝜅 ~ 𝐵𝑒𝑟(0.1) 

 Etc.   

Total System 

Demand 

Total demand for 

given area (MW) 
[500, 550, …] Δ ~ Ν(650,70) 
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Etc.   
 

 

[Note: example discrete ranges and distributions are purely illustrative.] 

Depending on the size of the parameter space and computational capacity / runtime 

limitations, one could either run a scenario for every combination of parameter values (if 

using discrete value options) or a fixed number of scenarios representing a random sample 

of possibilities. Use of probability distributions rather than discrete value ranges will likely 

improve the overall accuracy of the combined scenario output. 

 

Figure 11: Generation Models – Example distribution output from running multiple trials with a deterministic 
model 

Probabilistic Model, Running a Single Scenario to Output the Single “Most Likely” Response 

Distribution 

Similar to running a single scenario with a deterministic model, a probabilistic model here 

would provide a single probability distribution output. Again, the forecasted input data for 

the time period in question would represent the “most likely” scenario. 

Probabilistic Model, Running Scenario Testing over the Input Data Parameter Space 

Arguably the most complex option involves running multiple different scenarios through a 

probabilistic model to obtain a set of probability distributions. As before, this would likely 

be achieved by running scenarios over a defined input data parameter space, with 

individual variable parameter spaces constructed either discretely or using distributions. 

This output set of probability distributions would provide the most comprehensive view of 

sensitivity to forecasted input conditions, and variability in likely generator response. The 

usefulness of such an output is dependent on intended model usage in isolation (outside 

the optimiser context) and required input format for the optimiser module.  

As indicated above, the choice between deterministic and probabilistic modelling depends 

on multiple factors and each has associated pros and cons. With regards the “single 
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scenario” vs. “multi-scenario” run process choice detailed above, the core considerations 

are: 

• What is the required input for the optimisation module(s)? 

[This is dependent on the optimiser architectural design.] 

• Will these Generation Adaptive Input Models be used in isolation to gain insight? If 

so, a more holistic multi-run process capability may be useful. 

5.1.3.6 Further Considerations 

Further considerations around the above described “Final Capability” are recorded below. 

Utilising New Units without Sufficient Historic Training Data 

One may question how to “correctly” incorporate new units given they will not have 

sufficient levels of historic training data, as defined above.  

The nature of adaptive models is that they undergo a cycle of continuous improvement via a 

stream of real-time data. In other words, they continually improve over time as more data 

becomes available. Subsequently, the question becomes “How can we utilise existing 

information to create a proxy for new units during the initial stages of model development 

where little training data is available?”. And further, “At what threshold is the continuously 

improving model deemed fit for use?”. 

Comparison exercises could enable initial use of trained models for “similar” units when a 

new unit enters the balancing mechanism. Alternatively, new units could be simply treated 

at face value (exact response to any reasonable dispatch instructions) whilst model 

development is underway. 

Differences between Thermal and Renewable Generators 

The way in which thermal and renewable generators participate in the market is 

significantly different, resulting in different underlying issues. Consequently, the associated 

value of the above modelling approach varies by use case. Feedback suggests that this 

modelling capability is far more valuable for renewable units than for thermal – with 

thermal units generally expected to deliver when instructed, and poor accuracy of, e.g., 

wind PNs creating notable uncertainty. The forecasting applied to generator types can 

readily be split into modelling of uncertain resources (e.g., wind, solar) and overall 

balancing process performance.  

Considerations stemming from this include prioritisation of generator model development 

and differentiation between evaluation measures. 

5.1.4 Data Gap Analysis 

As is to be expected when defining a new, innovative capability, none of the existing or 

planned processes completely meet the requirements outlined in “Required Final 

Capability”. However, mapping said requirements to existing data sources and techniques 

provides a clearer view of missing elements, as well as next steps. 
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As noted previously, the true gap analysis deliverable sits separately to this report, and the 

below section therefore comments only on data availability and quality. 

5.1.4.1 Overview 

There are many Generation-related forecasts and optimisation elements currently in use. 

Where the novelty of the final vision Generation Input Data Model lies is in the appreciation 

of the potential discrepancy between FPNs altered by BOAs and actual recorded output. 

Accurate prediction of this potential discrepancy for each generator at a given time should 

lead to improved decision making around the dispatch process. 

The section “Existing and Planned Capabilities” above references defined sets of optimiser 

input data which represent expected future values of generation in the form of CCL and FX. 

Whilst these values would be important inputs into the final vision model, there is at 

present no dispatch scenario testing process as detailed in “Required Final Capability”. 

5.1.4.2 Availability of Data 

The below tables provide an overview of the currently understood data availability gap. 

Historic Training Data 

There is a hope that some of this historic data may exist in yet unexplored data silos. 

However, the working theory from SMEs interviewed as part of this project is that approx. 3 

years of data collection in real time would be required in order to meet the historic 

“Additional Information” data requirements outlined20. 

Table 6: Generation Models – Training Data Availability 

Category Data 
Frequency 

Required 
Total Time 

Currently Understood 

Availability 
H

isto
rica

l G
e

n
e

ra
to

r D
a

ta
 

Generator 

Offer Data 

Half-hourly (for 

each dispatch 

interval) 

At least 1 

year 

(Tapestry 

minimum), 

preferably 

approx. 3 

years (IBM 

view). 

Available, stored in National 

Grid Economic Database, 

NED (from the start of New 

Electricity Trading 

Arrangements (NETA) in 

2001). 

Production 

Forecast 

Data 

Half-hourly (for 

each dispatch 

interval) 

Available, stored in NED 

(from the start of NETA in 

2001). 

Instructed 

MW output 

Half-hourly (for 

each dispatch 

interval) 

Available, stored in NED 

(from the start of NETA in 

2001). 

 
20 It is worth noting that the full data requirements listed may not be necessary for a first model 

iteration. Analysis of model performance over time will indicate whether the currently unavailable 

variables will significantly improve forecast accuracy. 
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Actual MW 

output 

Half-hourly (for 

each dispatch 

interval) 

Available, stored in Data 

Historian. 

A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 

Weather 
Half-hourly 

profiles 

Some wind related data 

available (wind speed vs. 

wind power), stored in NED 

– unsure of exact storage 

length. 

Alternatively available 

through MET Office Weather 

Data for Business (wind, 

temperature, radiation 

levels etc.). 

Generator 

Conditions 
Ad-hoc 

Not aware of existence. 

Perhaps generators hold 
this historic data? 

Total System 

Demand 
Half-hourly 

Demand profiles kept for 

selected days (e.g., 

Coronations). Not aware of 

more extensive records. 

Binding 

Transmission 

Constraints 

Ad-hoc 
Not aware of any archiving 

of constraints. 

Dispatch 

State 
Ad-hoc 

Unclear – can perhaps be 

deduced but may not be 

required. 

 

Scenario Input Data 

Availability of the Scenario Input Data “Additional” variables is inherently related to the 

above availability of Training Data. The difference arises in the time horizon being 

considered, with Training Data being historical and Scenario Input Data being forward-

looking. 

Data groups required for scenario testing are generally more available, and hence not as 

restrictive to model development as the above training data.  

Table 7: Generation Models – Input Data Availability 

Category Data Time Currently Understood Availability 

S
ce

n
a

rio
 D

isp
a

tch
 

D
a

ta
 

Theoretical Dispatch 

Instructions 

Given 

future time 

period in 

question. 

To be created as part of model input. 

Existing PNs for given 

period 

Received by ESO and available. 

[Quantity dependent on time horizon 

of future time period in question.]  

Generator Offer Data 

Received by ESO and available. 

[Quantity dependent on time horizon 

of future time period in question.] 
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Weather Forecast data available and utilised. 

Generator Conditions 

Dependent on time horizons – not 

aware of longer-term planning from 

all individual generators. 

Total System Demand Forecast data available and utilised. 

Binding Transmission 

Constraints 

Forecast data available and utilised. 

[When considering short time 

horizons, active transmission 

constraints can be obtained from the 

Adaptive Transmission Model.] 

Dispatch State 
Current dispatch states, requirement 

for “warming” etc. understood.  

 

5.1.4.3 Data Quality / Granularity Analysis 

The quality and granularity of data is of great importance when building a model of this 

type. Due to security measures regarding Critical National Infrastructure (CNI) designation, 

data has not been able to be extracted for IBM-run data quality analysis. Instead, 

comments below reflect the current understanding of relevant data quality and granularity. 

Data Historian 

The Data Historian system is highlighted above as the location of historic actual MW output 

data for each generator. Whilst this data does indeed exist, ESO SMEs have noted several 

points for consideration regarding quality, granularity, and extraction. 

[Note: There is no complete data dictionary held for Data Historian.] 

• Data timestamps are inconsistent and muddled.  

This is due to the collection mechanism in which data is only updated when there is 

a change in value. As a result, there is no consistency in timestamps across units. 

For example, some meter values are captured at a frequency of up to five times per 

second, but if the generator is switched off then no data is recorded until the next 

non-zero reading. One could consider normalising timestamps by using average 

values across, for example, one second timeframes, but this may be insufficient 

when examining faults and outage scenarios with very fast timescales. 

• No differentiation is made between out-of-service and permanently 

decommissioned units. 

As a result of the data collection mechanism described above, there is no distinction 

in the data between units that have been permanently decommissioned and those 

that are temporarily out-of-service / turned off. In both cases, we simply observe a 

period of no data, thus leading to potential confusion. 

• Some units have incorrect flow direction data (positive vs. negative values) due to 

issues with physical asset wiring. 
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Data quality issues such as these are relatively obvious when manually viewed (with 

values trending in the wrong direction), but it is preferable to fix these at the asset 

rather than implementing ad-hoc data transformations which may later need to be 

reversed. 

• Static generator data is generally seen as untrustworthy. 

Static generator information variables such as latitude / longitude were often 

entered manually and, consequently, are not considered to be accurate. For 

example, multiple wind generators in relatively close proximity are given the same 

location data for simplicity, ignoring the nuanced differences. 

• Data extraction is very slow. 

Retrieval of data was not the primary purpose when Data Historian was initially 

implemented. As a result, it is very slow and difficult to bulk pull data via the 

associated Application Programming Interface (API). 

• Future software changes may result in Data Historian being sunset in favour of a new 

system (requiring data migration, re-structuring etc.). 

Planned SCADA upgrades and software renewals will likely result in Data Historian 

(which is fed from SCADA) being removed from service and replaced within a few 

years. 

National Grid Economic Database (NED) 

There is no known complete data dictionary held for NED, and tables have varying levels of 

meta data detail. Consequently, knowledge differs greatly by table / use case, with lots of 

views never used. 

Weather Data – Anecdotal 

Information from ESO SMEs suggests that some historic wind data is stored at one minute 

resolution, averaged from around four spot values. From a temporal perspective, this 

enables very fine-grain correlation analysis. Whilst one minute frequency may not be used 

in the final models, this gives the flexibility to aggregate to a suitable level. 

Weather Data – PEF 

The PEF data dictionary, whilst high-level, describes several different weather datasets that 

are downloaded and manipulated (calculating national averages etc.) via defined data 

pipelines: 

• Weather Actual, 

• Weather Forecast, 

• Weather Reference Data. 

The static weather reference data is used in PEF to align site IDs to physical locations 

(latitude, longitude, altitude) and their associated characteristics. 

As for the actual and forecast datasets, the below table provides a high-level summary. 
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Table 8: PEF Weather Data 

Dataset Resolution 
Update 

Frequency 
Latency Horizon Timestamp 

Source 

System 
Assumptions 

Weather 

Actual 
Hourly Hourly 

Scheduled job, 

20 minutes after 

MetOffice 

release. 

14D 

Weather 

actual in 

recent 

history – 

different for 

each 

variable. 

MetOffice 

- Data is loaded 

in time order 

with no gaps. 

Weather 

Forecast 
Hourly 2 Hourly 

Scheduled job, 

20 minutes after 

MetOffice 

release. 

14D 

Weather 

forecast for 

each point in 

time. 

MetOffice 

- Latest forecast 

received is the 

best for the 

dates covered. 

 

- Data is loaded 

in time order 

with no gaps. 

 

Whilst the documentation does not provide an explicit list of ingested variables, fields used 

within the calculation steps include, for each site: 

• Radiation 

• Temperature 

• Precipitation 

• Relative Humidity 

• Air Pressure 

• Dew Point Temperature 

• Visibility 

• Wind Speed 

• Wind Gusts 

Any calculated national averages utilise a fixed national weighting applied to the seven 

stations from which data is received: 

Table 9: PEF Weather Data – Site Weightings 

Station Name Code Weight 

Glasgow GLAS 0.10 

Leeming LEEM 0.07 

Harwarden HAWA 0.14 

Leconfield LECO 0.07 

Birmingham BIRM 0.16 

Bristol BRIS 0.18 

Heathrow HEAT 0.28 
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5.1.5 Regulatory Considerations, Explainable AI, and Process Impacts 

There are multiple “Explainable AI” related areas for consideration within the generation 

space. 

5.1.5.1 Dispatch Instructions 

Given as an example earlier, introduction of AI-generated dispatch instructions creates a 

requirement around the ability for humans to understand, analyse, and improve the 

underlying logic. Whilst this applies to all of the Input Data model areas feeding into the 

optimiser, specific generation questions may include: 

• In situations where the lowest price units are not utilised, what are the underlying 

reasons? Is there, for example, a historically noted issue with said units that may 

result in sub-par performance against expectation? Do forecasted external factors 

favour other units with regards expected response? Or do the core logical reasons 

sit within other areas (e.g., transmission constraints, movement of interconnector 

markets etc.)? 

5.1.5.2 Transparency with BMUs and Contractual Relationships 

Another consideration around AI transparency questions to what degree ESO should be 

responsible for informing and educating market participants on the unit-level input metrics 

and optimiser processes that would determine their usage. 

This may not be required under current contractual relationships. However, in the event of 

edge cases whereby a generator has been perceived to be “unfairly” treated, a level of 

transparency may be required. 

5.1.5.3 BMU Obligations 

As noted by an ESO Operational Manager in the document Virtual Energy System - 

Advanced Dispatch Optimiser Google X Comparison (April 2022), the very nature of the 

proposed Generation Adaptive Input Models raises questions around the wider market 

obligations. The proposal detailed above aims to correct generator input data and use past 

behaviour to predict output response. They observe that “this raises wider questions on 

generators’ obligations to provide accurate data, follow instructions and the market 

incentives around them”. These arising concerns are important considerations in defining 

the new AI-led landscape. 

5.1.6 Discussion Point: Is this style of modelling the best approach to address the 

core issue? 

As mentioned above, the stark differences between the balancing processes for thermal 

and renewable generators leads to a clear distinction in issues faced (see Further 

Considerations discussion). Due to both the nature of regulation and associated forecasting 

challenges, renewable generators’ PNs contribute significantly more to the overall 

uncertainty level. 
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This raises the valid question: 

Should ESO be focusing on modelling this renewable error (as outlined in this capability), or 

instead making regulatory changes to greatly reduce the error? 

Thermal generators participate in the market under a strict set of rules regarding financial 

incentives etc., thus promoting more accurate PNs and greater reliability. Aligning the 

renewable regulation rules to this structure used for thermal generation (or similar) could, 

theoretically, improve the reliability of renewable PNs. 

However, the differences in regulation were, in part, designed to encourage more renewable 

market participants as the UK consciously moves towards its Net Zero target. In altering 

these regulation rules, ESO potentially risks alienating existing renewable units and 

decreasing the rate at which new units enter the market. 

Therefore, perhaps a more realistic approach (balancing improvement of PN quality and the 

encouragement of new renewable units) would be a hybrid option. This could take the form 

of different regulatory rules depending on unit capacity. For example, larger renewable 

generators could be bound by stricter financial incentives to force improved PN accuracy, 

whilst smaller units could run under the current agreement.  

[Note: Discussions with the regulator are included as part of the roadmap deliverable.] 

5.1.7 Next Steps 

The separately delivered “Roadmap” output will specify next steps in working towards the 

more holistic longer-term end vision. 

However, as indicated above, there are a few immediate steps that can be taken to improve 

current capability and progress this area. These include: 

1. Implementation of simple rolling window / polynomial fit mathematical solutions to 

wind values to mitigate the impact of gusting and / or trending. 

2. Altering the use of wind generator metered values to instead use the last metered 

value before the BOA. 

3. Addressing of data availability issues by planning for a multi-year data collection 

period where necessary for model training purposes. 

4. Discussion with regulators regarding possible actions to improve PN accuracy. 

5. Initial Data Science workstream activities (see 4.2.1). 

Actions 1. and 2. are suggested quick improvements arising from conversations with ESO 

generation SMEs. Whilst these are considered by SMEs to be appropriate actions, further 

analysis post-trial implementation would be required to quantitively validate the expected 

improvement in forecasting capability. 
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5.2 Adaptive Transmission Model 

5.2.1 Overview 

At a high-level, the Adaptive Transmission Model referred to by Google X Tapestry in the 

output document Advanced Dispatch Optimizer System Roadmap Report aims to: 

• Provide a view of prioritised active transmission constraints to be fed into the 

optimiser module, 

• Suggest a form of suitable “control strategy” to mitigate resulting effects. 

Overall, this approach sees benefit coming from improved speed and efficiency of dispatch 

optimisation engines as well as enhanced situational awareness for transmission operators. 

The difficulty arising with this model group in particular, due to its complex nature, is the 

lack of specified detail around structure and potential implementation in Tapestry’s report. 

Consequently, it is hard to form a detailed vision of what was intended. To address this, two 

distinct final visions are outlined below: 

1. A high-level interpretation of Google X’s report, 

2. A far more detailed “IBM View” of constraint modelling, including analysis of the 

individual constraint problem types. 

The detail around these specifications is given in the “Required Final Capability” sections 

below, with distinction, as mentioned, between the high-level interpretation of the Google X 

Tapestry report and a formed IBM-view. 

The transmission model sections below aim to outline some of the current and planned 

constraint understanding capabilities, detail both the high-level Tapestry report 

interpretation and IBM view final visions (highlighting any decision points for 

consideration), and discuss some comparative gaps. [Note: The main As-Is analysis and 

gap analysis sit within a different deliverable but relevant data points are discussed here.] 

5.2.2 Existing and Planned Capabilities 

[See As-Is deliverable for full overview.] 

Below is an overview of some relevant elements but, as noted above, the true As-Is 

analysis sits separately to this report, and as such the below is far from exhaustive. 

The explored existing / planned transmission capabilities can be readily broken down by 

system into: 

• Power Network Analysis (PNA), 

• Online Stability Analysis (OSA), 

• Offline Transmission Analysis (OLTA), 

• Network Control Management System (NCMS). 
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5.2.2.1 Power Network Analysis (PNA) 

PNA runs offline static single point contingency analysis every 10 minutes to secure the 

network as per the Security and Quality of Supply Standard (SQSS) licence obligations, 

ensuring that no constraints (thermal, voltage, fault level, generator stability) are violated. 

It does this by running thousands of “what if” scenarios through an underlying base 

network model of the GB power system (fed manually from OLTA) to continuously monitor 

system health – at each stage determining if the network is still operating within licence 

obligations. These “what if” scenarios may include “What would happen if this particular 

generation asset were to trip?” or “What would happen if these two generation assets 

tripped at the same time?”. 

Generally speaking, there are two forms of contingency scenario: “Database defined” 

contingency (determined completely by licence obligations), and “User defined” 

contingency (scenarios that control room users identify as useful and are thus created “on 

the fly”). This capability allows control room engineers to run offline analysis to identify any 

weaknesses in the current state of the system. 

Whilst this repeated single state contingency analysis is arguably the most relevant 

functionality of PNA, it is also worth noting the fault level analysis module. In essence, this 

is short circuit analysis – studying exposure and tolerance of assets to different faults. If a 

circuit breaker or other piece of network equipment is deemed to be unable to tolerate a 

tested fault, this could be a major issue (i.e., this module represents more than just a 

safety-type analysis). 

5.2.2.2 Online Stability Analysis (OSA) 

OSA is a real-time tool that performs stability constraint security assessments and provides 

this information to control room users. It does this by taking multiple inputs, including: 

• Load flow (state estimation from PNA), 

• Real-time status of intertrip modes, telemetry on integrated Energy Management 

System (iEMS) etc., 

• Dynamic time-based models, such as generator dynamic models, PSS (Power 

System Stabilisers), wind farm models, reactor models etc., 

• Criteria data (can be thought of as limits), 

• Manually defined contingencies (different to PNA contingencies). 

The dynamic models are manually converted from OLTA. This process is significantly more 

complex than the transfer of the load flow base model from PNA, and as such is only carried 

out on a 1-2 week frequency. 

5.2.2.3 Offline Transmission Analysis (OLTA) 

At a high level, OLTA is an offline network study model (i.e., it is not fed by real-time data) 

that enables teams to study scenarios for outage planning in the control room, as well as 

longer term future planning. Crucially in this context, it forms the base model which inputs 

into other online modelling tools such as PNA, OSA and NCMS. 
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5.2.2.4 Network Control Management System (NCMS) 

Aiming to replace iEMS (integrated Energy Management System), NCMS delivers a real-time 

situational capability for control centre operators, enabling them to conduct real-time 

“what if” analysis. This system therefore presents a shift towards real-time updating of 

constraints. To achieve this, data is ingested from three primary sources: 

• Static offline models from DNOs (Distribution Network Operators), TOs 

(Transmission Operators), OFTOs (Offshore Transmission Operators ) and generators 

(submitted through OLTA) – this is the core of the model, providing a representation 

of the physical network, 

• Dynamic, real-time metering data from SCADA, 

• Dynamic, real-time data from 3rd parties (DNOs, TOs, OFTOs and generators), 

including physical flows, state of breakers etc. 

5.2.3 Required Final Capability – High-Level Google X Report Interpretation 

The required final capability discussed below interprets the description provided in Google 

X Tapestry’s Advanced Dispatch Optimizer System Roadmap Report, providing a much 

greater level of detail, and highlighting arising decision points / considerations.  

The description provided in the Tapestry report is relatively vague and lacks detail, thus 

requiring various assumptions to be made in the methodology. It consequently raises 

multiple questions and concerns, highlighted in the considerations sections below. 

[Note: Whilst this section is included for completeness, an alternative “IBM view” of the 

final process is additionally outlined to give a detailed view which is free of assumption and 

addresses the relevant outlined considerations. Consequently, this section is relatively brief 

in discussion.] 

The transmission model aims to provide both a view of active transmission constraints 

(thermal, contingency, voltage and stability) for the given time period in question, as well as 

suggestions for a resultant control strategy. In other words, the model aims to answer the 

question: 

What are the forecasted active transmission constraints given recent loading trends, and 

what can we do about them? 

The below figure provides an initial high-level assumed view of the overall process for 

implementing this multi-stage model.
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5.2.3.1 Overview 

 

Figure 12: Transmission Model – Overall High-Level Process Flow 
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Briefly describing these stages: 

Line Rating Input Data 

Data attributes that influence a transmission line rating and can be used to calculate ratings 

dynamically. These include wind speed / direction, temperature, humidity, height of line, 

material, and conduction direction. 

Dynamic Line Rating Calculation Model 

Potentially owned by the Transmission Operators, this calculation unit outputs dynamic line 

ratings, thus aiding the calculation of constraints. Given the purpose of the constraint 

calculations is to analyse recent (“live”) loading trends to foresee active transmission 

constraints, the dynamic line ratings required are both recent historic and forward-looking. 

“Live” Input Data 

This data, which is used to evaluate active transmission constraints, consists of 

transmission facility loading trends over the past few hours. This includes expected flow, 

actual flow, and established limits. Further, forecasted limits are also output from the 

Dynamic Line Rating Calculation Model. 

Pre-Processing / Cleaning  

An initial cleaning step ensures that the collected “live” input data is of a usable form and of 

sufficient quality to flow effectively into the constraint calculation logic. As indicated, steps 

may include, but are not limited to: 

• Data Cleaning 

• Missing Data Handling 

• Data Transforms 

Constraint Calculation Logic 

The implemented logic takes the cleaned input data and evaluates the rate of change of 

actual and expected flow versus limit, as well as projecting forward against forecasted 

limits, to produce the Active Constraints output below. This takes the form of a short-term 

piece of data analysis, as opposed to a trained “model”. In short, this aims to answer the 

question “What constraint limits are projected to be reached?”. 

Active Constraints 

From the calculation logic, output is an ordered list of active transmission constraints for 

the time period in question. These provide a clear, detailed view that can be used to form 

control strategies. 

Additional Pre-Processing / Cleaning 

A further pre-processing / cleaning step may be required to ensure the constraints are able 

to flow into the resultant strategy model.  
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Training Input Data 

To develop a rule-based model which can suggest suitable control strategies in response to 

a given set of transmission constraints, one requires training data indicating the “correct” 

strategy associated with given constraints. This is not trivial as the definition of “correct” 

may vary with individual opinion and risk appetite. 

Data Quality / Correlation Analysis 

This crucial first step evaluates the quality, format, and inter-relationships of variables in 

the available training data. The outcomes of the analysis help inform the usability of the 

data as well as dictate necessary Pre-Processing steps. 

Pre-Processing Logic 

Logic implemented here cleans and transforms data such that it can be used in the chosen 

model. As indicated, steps may include, but are not limited to: 

• Data Cleaning 

• Missing Data Handling 

• Feature Selection 

• Data Transforms 

• Feature Engineering 

• Dimensionality Reduction 

Model Training 

The exact nature of the modelling technique is dependent on the form of input data and the 

nuances of the problem. For example, an immediate question arising is: 

Given a defined level of detail expected in the strategy outputs, is the decision-making 

process “modellable” such that a rule-based approach will be able to capture the nuances 

required? 

Whether or not there is an objective “right answer” is an important consideration and 

should be used to inform the output format and modelling approach. 

Ongoing Evaluation and Retraining through Continuous Stream of Data (Adaptive) 

The purpose of Adaptive Machine Learning models (as opposed to Traditional Machine 

Learning) is to react to changing data sets, utilising real-time data to “adapt” and more 

accurately represent real-world situations. As such, there is an element of continuous 

improvement. 

Performance Evaluation Metrics 

Whilst the exact evaluation metrics cannot be specified before model definition, a form of 

accuracy calculation will likely inform model performance and parameter tuning. 
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Rule-based Resultant Strategy Model 

The rule-based resultant strategy model aims to suggest suitable mitigation strategies 

given the set of input active transmission constraints. As indicated above, the complexity of 

this model is largely dependent on the level of nuance and complexity of strategies. 

Final Output 

The final output from this model group is the set of ordered active constraints combined 

with the resultant suggested control strategies. The potential form of this output is 

discussed below in sections 5.2.3.4 and 5.2.3.5. 

5.2.3.2 Data Requirements Overview 

The diagram above highlights three core sets of input data: Line Rating Calculation Inputs, 

“Live” Loading Trends, and Strategy Model Training Data. 

Line Rating Calculation Inputs 

As noted, this calculation would likely be owned by the Transmission Operator. The below 

data requirements are therefore provided simply for completeness as potential contributing 

variables. 

The calculation inputs here aim to cover all attributes (both static and dynamic) that affect 

a transmission line’s “dynamic line rating” at a given point in time. These can be readily split 

into static line properties, dynamic weather conditions, and dynamic operational attributes.  

Feeding into the constraint calculations, these variables will need to cover a “recent 

historic” period in addition to a very short-term forward-looking timeframe (the reasoning 

behind this requirement is discussed below). The required frequency of dynamic variables 

is dependent on the line rating refresh rate needed, given the desired granularity of 

analysis. 

[Note: Whilst, for this purpose, the focus is on the short-term forward and backward-

looking periods as stated, the Dynamic Line Rating Calculation logic could in theory be 

utilised in isolation for any historic or forward-looking timeframe (assuming available input 

data).] 
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Table 10: Transmission Model – Line Rating Calculation Inputs 

Category Data Description Frequency Total Time 

S
ta

tic L
in

e
 

P
ro

p
e

rtie
s 

Material 
Transmission line 

material. 
Static property 

T-few hours 

through to 

T+1 hour. 

Height of 

Line / Line 

Sag 

Average height of 

transmission line 

above ground level 

(affecting weather 

impact). 

Static property 

D
y

n
a

m
ic W

e
a

th
e

r C
o

n
d

itio
n

s 

Wind Speed 

Speed of wind, 

impacting 

temperature of 

transmission line. 

Required refresh 

rate (TBD) 

Wind 

Direction 

Direction of wind, 

indicating parallel and 

orthogonal 

components. 

Required refresh 

rate (TBD) 

Temperature 
Ambient temperature 

at line location. 

Required refresh 

rate (TBD) 

Humidity 
Ambient humidity at 

line location. 

Required refresh 

rate (TBD) 

D
y

n
a

m
ic

 

O
p

e
ra

tio
n

a
l 

A
ttrib

u
te

s 

Conduction 

Direction 

Direction of current 

flow. 

Required refresh 

rate (TBD) 

Etc.   
 

 

These variables account for the primary factors impacting line ratings in real time. 

“Live” Loading Trends 

Transmission facility loading trends over the past few hours, as well as forecasted dynamic 

limits, are input to a calculation module to generate the active transmission constraints 

(based upon forward projection of trends). As stated by Tapestry, this data is used to 

evaluate the rate of change of actual and expected flow versus limit. 
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Table 11: Transmission Model – “Live” Loading Trends Data 

Category Data Description 
Frequency 

(Recent Historic) 

Total Time 

(Recent 

Historic) 

T
ra

n
sm

issio
n

 fa
c

ility 

lo
a

d
in

g
 tre

n
d

s 

Expected 

Flow 

Expected transmission 

flow over period 

(dependent on demand 

/ generation forecasts). 

To be set 

Past few 

hours 

Actual 

Flow 

Actual transmission 

flow over period. 
To be set 

Limit 

Transmission limit at 

given time (dependent 

on the calculated 

Dynamic Line Ratings). 

To be set 

 

The question of frequency of this recent historic data (spanning the past few hours) 

depends on the calculation logic to be implemented within the constraint calculation 

module. For example, a few sets of flow readings (expected vs. actual) covering the full 

several hour timeframes may be sufficient to establish a projected trend, but would likely 

miss the more subtle aspects incorporated by utilising a 10-minute frequency per se. 

Higher frequency readings would provide more detail though may be unnecessary given the 

relatively high-level of constraint definition. 

In addition to the recent loading trends, the constraint calculation logic will use the 

forecasted dynamic line ratings output from the Dynamic Line Rating Calculation logic. 

Table 12: Transmission Model – Forecasted Limits 

Category Data Description 

Frequency 

(Short-term 

Future) 

Total Time 

(Short-term 

Future) 

F
o

re
ca

st 

Limit 

Transmission limit at 

given time (dependent 

on the calculated 

Dynamic Line Ratings). 

To be set 
Subsequent 

hour. 

 

Strategy Model Training Data 

Regardless of the final form of the Resultant Strategy Model (see discussion above), training 

data must consist of a series of (historic) constraints and their associated “correct” 

mitigation strategies. 
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Table 13: Transmission Model – Strategy Model Training Data 

Category Data Description Frequency 

S
tra

te
g

y D
a

ta
 

Sample 

Transmission 

Constraints 

Set of example transmission constraint 

lists. 

N/A – series of 

single point 

training 

examples. 

Associated 

“Correct” 

Mitigation 

Strategies 

Set of mitigation strategies 

corresponding to the above constraint 

sets. 

N/A – series of 

single point 

training 

examples. 

 

Historic data pairs of this form would enable development of a rule-based model, 

suggesting “optimum” control strategies for a given set of constraints based upon the 

relationships learnt from the historic training data. As with many models of this type, a 

sufficient number21 of example pairs covering an adequate range and complexity of 

situation would be required. 

5.2.3.3 Data Models 

As with the Adaptive Generation Models discussed above, we can create a logical entity-

relationship diagram to visualise how the Line Rating Calculation inputs and Constraint 

Calculation inputs relate and could be structured.22 

 
21 The definition of “sufficient number” in this context is dependent on the level of variability and 

nuance in the underlying data population.  
22 See section 7 for overview of entity-relationship notation. 
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Figure 13: Transmission Model – Example view of data model for Line Rating Calculation inputs and Constraint 
Calculation inputs 

Due to the complexity of the Transmission problem, this data model highlights calculation 

nodes in addition to the core underlying data inputs. As an example, the right-hand side of 

the model highlights how the line rating calculation logic outputs the required forecasted 

dynamic line ratings so they can flow into the constraint calculation. As before, the different 

connection types indicate the cardinality of data relationships. 

5.2.3.4 Constraint Calculation Considerations 

Power Flow Modelling 

As noted in the below data availability comments, expected flow is dependent on a power 

flow run against the network model. In forming a solution of this type, one would have to 

consider where such power flow modelling should sit architecturally. For example, 
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depending on other uses, the power flow modelling component may be best placed outside 

the Transmission data model architecture and called upon when required. 

Dynamic Line Ratings – Use of both “recent historic” and short-term forward-looking data 

When considering the above described process, a reasonable question arising may be: 

Why are both short-term historic and short-term future dynamic line ratings required in the 

constraint calculation module? Could one instead only use the forward-looking ratings and 

compare against the projected flow trends? 

Whilst this is not explicitly mentioned in the Google X Tapestry report, the suggested 

requirement for both short-term historic and short-term future dynamic line ratings stems 

from the evaluation of expected and actual flow over the past few hours. Use of 

corresponding calculated dynamic limits over the past few hours provides a view as to 

whether the dynamic line rating calculation effectively accounts for any discrepancy 

between expected and actual flow. This knowledge helps to establish the reliability of 

forecasted limits based upon the dynamic line rating logic. In other words, for a given 

circuit, it provides a view of recent accuracy of dynamic line rating. 

Use of Flow Trends 

One issue identified with the above process is the use of loading trend analysis to calculate 

transmission constraints. Whilst this may provide a useful view, use of this historic data 

implies the presence of an underlying organic trend. This may be an acceptable 

approximation when purely considering solar or wind generation, for example. However, in 

practice, the influence of additional factors results in trend movement that cannot be easily 

predicted through rate of change projection.  

Frequency of data 

The above tables do not specify the required data frequency / refresh rates. These are to be 

set based on levels of data availability as well as usefulness from a business insight point-

of-view. 

Output Type 

This specification does not indicate whether the output constraints would take the form of 

constraint groups (as currently utilised) or more granular line-level constraints. Whilst there 

is significant benefit to the detail provided by line-level constraints, there is a balance to be 

struck between level of insight and computational requirement. As a result, it is likely that 

computational considerations will dictate the level of granularity. 

5.2.3.5 Modelling Approach Considerations 

As indicated above, the viability and potential form of the “Resultant Strategy Model” is 

dependent on the nuances of the problem being addressed as well as the definition of 

“Resultant Strategy”. 
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The definition of “Resultant Strategy” here is currently unclear and, unless treated as an 

iterative version of an input forward-looking plan (requiring further inputs), has limited 

understood value. Does this simply refer to suggested alternative flow routes associated 

with each constraint? Or is there more capability expected from this part of the model?  

Different constraints often need to be managed using different levers. For example, some 

constraints are best managed by “moving” generation (e.g., reduction of wind generation in 

Scotland and corresponding increase of thermal generation in the South of England), whilst 

others may be best managed through alternative routes (including, in the future, demand 

side response). This leads to a complex view of potential strategies. 

Deterministic “Correct” Strategy 

One approach to this problem would be to develop a model that outputs a single “correct” 

strategy to mitigate a given set of transmission constraints. The core concerns arising with 

regards training a deterministic model of this type are: 

• How subjective is a view of “correct” strategy? 

• What additional factors impact strategy choice? 

[e.g., total demand profiles etc. – these would have to be built into the model to 

improve accuracy.] 

• Assuming required additional factors can be modelled, is the decision-making 

process actually “modellable” via a rule-based approach? Or is every scenario 

unique and hence cannot be easily generalised? 

Multiple Suggestion Output 

Another approach might look to output a series of potential strategies to aid the manual 

decision-making process. This would enable operators to utilise their knowledge of the 

specific scenario and any associated nuances to make a more informed decision around 

strategies. This approach appears more sensible at this stage due to the unknown 

complexity of scenarios and level of experience / intuition utilised in manual decision-

making. 

5.2.4 Data Availability Comments 

Whilst the main Transmission model discussion lies within the Required Final Capability – 

IBM View section, some data availability points are highlighted below. 

Line Rating Calculation Inputs 

Dynamic ratings are to be owned by the Transmission Operator (TO) going forward. As such, 

any required data for these calculations falls outside the remit of the ESO Control Room 

activities. 

  



Page | 61  

 

“Live” Loading Trends 

Table 14: Transmission Model – “Live” Loading Trends Data Availability Comments 

Category Data Description 

Total Time 

(Recent 

Historic) 

Comments 

T
ra

n
sm

issio
n

 fa
c

ility lo
a

d
in

g
 tre

n
d

s 

Expected 

Flow 

Expected transmission 

flow over period. 

Past few 

hours 

Expected flow 

will come from 

generation and 

load forecasts. 

Once applied 

against the 

network model 

and a power 

flow run with the 

future network 

conditions, this 

would provide a 

view of future 

flows. 

Actual 

Flow 

Actual transmission 

flow over period. 

Comes from the 

actual metering 

from the TO. 

Limit 

Transmission limit at 

given time (dependent 

on the calculated 

Dynamic Line Ratings). 

To be done by 

the TO going 

forward (see 

above). 

 

Strategy Model Training Data 

“Correct” strategy data for given conditions is not held, other than what is put into the 

transmission plan. The current idea is to look at this in line with the look ahead view to 

observe the effect of a generator on a constraint given the metric to be optimised (e.g., 

cost). 
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5.2.5 Required Final Capability – IBM View 

As indicated previously, a more exact and detailed vision of a final capability is additionally 

included here. This view addresses the concerns highlighted in the above interpretation and 

does not require the same level of assumption. 

To provide greater granularity of insight, the final vision presented here splits analysis by 

the 11 constraint problem types (as defined as part of Balancing Transformation)23. For 

each of these problems, we have conducted a multi-dimensional analysis to establish 

relative importance and associated complexity if included in the optimiser. Treating the 

problems separately allows for an appreciation of the differences in frequency, magnitude 

of problem, impact on dispatch solution etc., and, subsequently, the significant differences 

required in approach. 

Whilst these problems are addressed individually below, the overall Transmission Input 

Data model is the collection of such sub-models – together ensuring the “highest value” 

problems are addressed in the optimiser, whilst considering the balance between value add 

and computational complexity. 

5.2.5.1 Constraint Type Analysis 

Multi-dimension analysis was conducted with ESO SMEs to establish the relative 

importance of the 11 defined constraint problem types. This analysis enabled constraint 

types to be ranked and differentiated, subsequently resulting in a more comprehensive 

vision which treats constraint types individually24. 

For each of these constraint problem types, there are three core options regarding how they 

could be addressed in an end vision: 

1. As-Is – address the constraint type separately to the optimisation problem, utilising 

the current (manual) approach, 

2. Post-Process Automated Check – rather than incorporating the constraint type into 

the optimiser itself, create an automated check of the optimiser generated solution 

and make any required changes manually, 

3. Inclusion in the Optimiser – include the constraint type in the formulation of the 

optimisation problem. 

Which of these options is chosen for each constraint type is dependent on the relative 

impact they have on the problem – striking a balance between frequency of problem 

occurrence, ease of final process for control room engineers, and associated complexity of 

the optimisation problem. 

 
23 Thermal Constraints, Generator Stability, Voltage (SQSS), Fault Level, Regional Response, Rate of 

Change of Frequency (RoCoF) / Inertia, Vector Shift, Largest Loss, Frequency Impact, Black Start, 

National Load 
24 Constraint models are considered in isolation here, though there will clearly be some 

dependencies between different constraint types when considered from a holistic optimisation 

perspective.  
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For example, if any of the constraint types were to introduce quadratic (or indeed higher 

order) polynomial constraints, this would drastically change the complexity of the 

optimisation problem and may be better incorporated via options 1. or 2. above.  

The below table provides this initial analysis of constraint type relative impact and 

subsequent focus areas from an optimisation perspective. 

[Note: A suggested next step would be more detailed analysis of these constraint types to 

validate the conclusions drawn here as to optimiser-suitability.] 

Constraint Type Definitions 

As mentioned above, analysis is split based on the 11 constraint problem types defined as 

part of Balancing Transformation: 

 

Figure 14: Constraint Problem Type Graphic 

Definitions of the various constraint problem types are as follows: 

Table 15: Constraint Problem Type Definitions 

Constraint 

Problem 
Description 

Thermal 

Constraints 

The MW flow through a line is limited by thermal factors. If a line is too hot, 

it starts to drop and risks breaching the safety clearance. Factors such as 

weather impact the line temperature and hence the associated MW flow 

limit. 

Thermal constraints most frequently occur when one of two lines trips, 

resulting in increased reliance on the other. The transmission team are 

responsible for identifying impacted lines and post-fault actions, but the 

energy team is required to select the necessary units to perform said 

actions. 
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Generator 

Stability 

These constraints ensure that a Generation unit does not trip or 

disintegrate in the event of a fault. They are shown as a limitation of MW 

flow through a certain line for a given amount of time, or alternatively a rule 

dictating which units can (or indeed must) be online. 

Voltage 

(Security 

and Quality 

of Supply 

Standard, 

SQSS) 

The concern usually considered here is voltage drops. Voltage is 

dependent on reactive power and on the structure of the electrical network 

(configuration, outages, repair, etc.). Voltage issues are addressed by 

running the "correct" generators based upon reactive power and 

geographical spread. 

Fault Level 

At a high-level, a fault occurs when a line is touching something that it 

should not be, creating a short circuit and resulting in a high current. If the 

current is too high, one is unable to clear the fault (the automatic switch to 

stop power flow fails).  

Fault level calculates how high the current would be if there was a fault. 

The transmission team runs a simulation on all possible faults and 

provides the requirement to put a unit on or off to solve bad values. 

Regional 

Response 

There are two core considerations around regional response constraints: 

1. May want to limit response within a constraint area because, if they 

were all activated, a constraint limit might be crossed, 

2. May want to avoid having response in the same circuits as large 

generators to mitigate the impact of a circuit break – loss of the 

generator would still enable access to the response. 

Rate of 

Change of 

Frequency 

(RoCoF) / 

Inertia 

“RoCoF” describes how fast frequency values change. Frequency 

increases or decreases at a rate proportional to the gap between 

generation and demand. Inertia also impacts the RoCoF. 

If the RoCoF is too high, certain embedded generation units trip, resulting 

in a RoCoF event. This most likely occurs after a largest loss. As NG pay 

generators to protect their units to prevent tripping, the relative size of this 

issue should decrease. 

RoCoF is required to be below 0.125Hz/s at all times. Usually, the 

cheapest option to achieve this is to change the size of the largest loss, but 

this only works up to a certain point and further considerations such as 

inertia may be required. 

Vector Shift 

Small renewable units connected to the distribution network disconnect 

themselves from the grid if they notice changes in the angle of the voltage. 

This angle changes in the case of a transmission fault (line tripping) or a 

largest loss in order to protect them from breakage. 

 

This is a local problem and possible severity is dependent on, for example, 

circuit relations between embedded generation and larger generators. 
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Largest 

Loss 

Sufficient response is carried to ensure that frequency can be recovered 

within the required timeframes in the case of a “largest loss” system event. 

In other words, answering the question “What is the theoretical largest 

amount of MW that could be lost in the case of a system event?”. 

There is a largest generation loss and a separate largest demand loss, both 

of which are dependent on multiple factors. 

Frequency 

Impact 

As an additional consideration to ensure impact on frequency is not 

forgotten, one should also ask “Given inertia etc., how would loss of a 

given generator impact frequency?”. 

Black Start 

Certain generators are able to start with no power requirement, whilst 

others are paid to continue generation on a very low level for several hours 

post a system-outage.  

At every point in time, NG require black start machines to be available in 

every zone to assist in the case of a national blackout. 

National 

Load 

National and regional demand is volatile, with the variability of both 

weather and consumer behaviour affecting this. As such, forecasts may be 

incorrect and result in a significant discrepancy compared to actuals. 

 

Constraint Type Relative Analysis 

The below analysis evaluates each of the defined problems against a series of dimensions, 

including frequency, impact on solution, associated workload etc., to establish whether 

they should be considered within the optimiser. 

Table 16: Constraint Problem Type Analysis (Note: 1=Low, 3=High) 

Constraint 

Problem 

Type 

How 

frequently 

does the 

problem 

occur?  

(1-3) 

How sub-

optimal is 

the 

resultant 

solution 

(i.e., how far 

from the 

cost 

optimum?) 

(1-3) 

How much 

additional 

workload 

does each 

occurrence 

create for 

the control 

room? 

(1-3) 

Is the 

constraint 

type 

currently 

handled by 

an 

optimiser? If 

yes, which 

one? 

Is the 

constraint 

type 

handled by 

UWA? If yes, 

which one? 

Can the 

constraint 

type likely 

be 

formulated 

as a MILP 

constraint? 

Likely focus 

of input data 

model? 

Thermal 

Constraints 

3 

Not 

uncommon 

to have 3-4 

constraints 

active per 

day. 

TBC 3 Yes 

LDA and 

MDA, 

elements 

going into 

BDO as 

restrictions. 

No Yes Yes 

Generator 

Stability 

2 

Often have a 

limit 

whether it's 

a thermal or 

TBC 3 Yes 

LDA and 

MDA, 

elements 

going into 

No Yes Yes 
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stability 

constraint 

BDO as 

restrictions. 

Voltage 

(SQSS) 

3 

Effectively 

occurs every 

night and 

some days 

due to 

insufficient 

reactive 

power and 

the market 

not 

highlighting 

voltage as a 

problem to 

solve. 

3 

Significant 

sums of 

money are 

spent on 

running 

units with 

the sole 

purpose of 

addressing 

voltage. All 

asset types 

are eligible 

though 

require 

correct 

network 

spread. 

3 

Effectively 

requires a 

complete 

replan to 

ensure 

voltage 

needs are 

met. 

No 

Big unit sync 

/desync 

decisions 

are already 

fixed once 

the 

optimiser 

starts 

running. 

No 

complete 

Voltage 

sheet from 

the TSM 

states what 

the 

requirement 

is. There is a 

sheet 

showing 

location of 

the unit for 

visualisation

. 

Yes 

This was 

one of the 

aims of EBS 

(scheduling)

. 

Yes 

Fault Level 

1 1 

Mostly 

solved by 

transmissio

n running 

arrangemen

t. 

1 No No 

Handled by 

OLTA 

Unsure No 

Regional 

Response 

1 

Used to be 

large as 

contracted a 

lot of 

response in 

one area. 

2 1 No No 

Done on 

paper. 

Yes No 

Rate of 

Change of 

Frequency 

(RoCoF) / 

Inertia 

3 

At least 

daily, mostly 

depends on 

wind and 

interconnect

ors. 

3 

Have to run 

assets that 

provide 

sufficient 

inertia; 

raising the 

question 

"could an 

optimiser 

come up 

with a 

significantly 

better 

solution?" 

3 

Strategy 

team. 

 

2 

Energy 

team. 

No 

Optimiser 

does not 

look at 

scheduling 

time period. 

Yes 

FFRIC/DELP

HI 

Yes 

Scheduling 

timeframe. 

Yes 

Though just 

automating 

it may be 

sufficient, as 

an optimiser 

might not 

produce a 

drastically 

better 

solution. 

Vector Shift 

1 

Risk is 

assessed 

continually 

with FFRIC 

and DELPHI, 

but real 

impact is 

quite low. 

1 1 No Yes 

FFRIC/DELP

HI 

Yes No 
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Largest Loss 

3 1 

Drives the 

solution as a 

necessary 

requirement 

to meet. 

2 No Yes 

FFRIC/DELP

HI 

Yes Yes 

Frequency 

Impact 

3 

Very similar 

to largest 

loss. 

1 2 No 

Set 

requirement

. 

Yes 

FFRIC/DELP

HI 

Unsure No 

Black Start 

1 1 1 No Yes 

Daily check 

by aNSE if 

they have 

enough 

(restoration 

contracted) 

units in 

place in 

each zone. 

Yes 

Scheduling 

timeframe. 

No 

National 

Load 

3 1 

Input 

requirement 

rather than 

a deviation 

from 

optimum. 

3 Yes 

LDA, MDA 

Yes 

Only the 

demand 

forecasting 

part. 

Yes Yes 

 

Summarising the numerical values to highlight severity of problem, 

Table 17: Constraint Problem Type Analysis - Numerical Attribute Summary 

Constraint Problem Type 
Frequency of 

Problem 

Sub-optimality of 

Resultant Solution 

Additional Work per 

Occurrence 
Average 

Thermal Constraints High  High High 

Generator Stability Mid  High Mid 

Voltage (SQSS) High High High High 

Fault Level Low Low Low Low 

Regional Response Low Mid Low Low 

RoCoF / Inertia High High Mid High 

Vector Shift Low Low Low Low 

Largest Loss High Low Mid Mid 

Frequency Impact High Low Mid Mid 

Black Start Low Low Low Low 

National Load High Low High Mid 

 

Here, the colours denote the severity of the different constraint problems when measured 

against the three headings. Simply translating the numerical scores from the analysis table 

above, colours range from green (score of 1) through to red (score of 3). 

The resulting “highest value” problem types forming the initial group for inclusion in the 

optimiser logic are:  

1. Thermal Constraints 

2. Generator Stability 
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3. Voltage 

4. RoCoF / Inertia / Largest Loss 

For each of these specific problem types, we now look to create a view of the potential data 

model flow into the optimiser module. 

5.2.5.2 Overview 

Based on the constraint type analysis above, the below diagrams show the processes by 

which the relevant constraints (those to be fed into the optimiser) could be calculated. Note 

that these take the form of constraint calculation modules, aiming to output constraints 

based on forecast data (as opposed to explicitly built Machine Learning models). 

Together, these individual sub-models (each representing a different constraint type 

problem) combine to form the overall proposed Transmission Input Data model. 
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Figure 15: Transmission Model – Thermal Constraints 
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Figure 16: Transmission Model – Generator Stability Constraints
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Figure 17: Transmission Model – Voltage Constraints
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Figure 18: Transmission Model – RoCoF / Inertia / Largest Loss Constraint
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Exploring each of these in turn: 

Thermal Constraints 

Thermal constraints are generated by feeding a series of relevant data metrics into a power 

flow modelling component. These include local network characteristics and line ratings, as 

well as controllable variables that make up the scenario testing capability. Altering the input 

weather forecasts, network configuration, generation / demand forecasts, or system 

operating plans will provide insight as to the sensitivity of constraint outputs to these 

particular dimensions. 

The Transmission Operator (TO) ownership of line ratings (be these static or dynamic) 

removes a potential calculation complexity for ESO in developing this model architecture. 

However, as noted, the associated lack of control over the format, inputs, refresh frequency 

etc. could arguably hinder the intended granular analysis. [See below for further 

discussion.] 

As shown, a post-event validation process is crucial here in creating a feedback loop of 

continuous learning and model improvement. The working assumption is that this process 

would be enabled by a data warehouse holding information on relevant decisions and 

production plans for a given time period to allow post-event analysis by various groups. This 

process is therefore not currently considered in scope for the control room. 

Generator Stability Constraints 

Similar to thermal, generator stability constraints here make use of power flow modelling to 

create the required optimiser input. Data inputs for the power flow model include relatively 

static local network characteristics, and the controllable variables which form scenarios to 

test. Scenario data consists of faults being tested, network configuration, generation / 

demand forecasts, and system operating plans. Forming of these scenarios can indicate 

relative sensitivity of output constraints to input variables, as previously. 

Unlike thermal constraints, a post-event validation process is not explicitly referenced here. 

In its place is an underlying assumption regarding the post-treatment of genuine events: In 

the case of an actual event, there will be a separate investigation outside of the balancing 

process. No post event analyses are therefore included within the model. 

Voltage Constraints 

Voltage constraints are generated by running relatively static local network characteristics 

and generator characteristics, as well as the building blocks of a given scenario through 

power flow modelling (or indeed simpler rule-based logic). A scenario is created from a 

given voltage profile, network configuration, and set of system operating plans. Sensitivity 

analysis can be carried out by running a series of different scenarios. 

Actual voltage events are very rare and, similarly to generator stability, it is assumed that 

post-event investigations will be held outside the balancing process, with no need for such 

analysis within the modelling capability. 
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RoCoF / Inertia / Largest Loss Constraints 

RoCoF / inertia and largest loss constraints (for input into the optimiser) are created in a 

very similar manner to one another, again utilising power flow modelling. [Note: These 

constraint types are not currently calculated using power flow modelling, but this type of 

capability is planned for the development and rollout of NCMS.] The number of inputs 

shown is fairly large comparatively to other constraint types: network model, generator 

characteristics, understanding of faults, contract information regarding reserve, and 

scenario variables. The scenarios in this instance consist of largest demand loss, largest 

generation loss, and system operating plans. Output constraint sensitivity analysis can be 

conducted as previously. 

Post-event investigations and analyses are again assumed to be held outside the scope of 

this work. 

5.2.5.3 Data Requirements Overview 

The above process diagrams highlight the multiple sources of data required for each of 

Thermal, Generator Stability, Voltage, and RoCoF / Inertia / Largest Loss Constraints. 

Mirroring the constraint process diagrams, data sources are split into fixed / externally 

sourced data and scenario building variables. Altering of these scenario variables (e.g., 

weather forecast, network configuration etc.) enables a view of constraint sensitivity to 

input variables.    

Thermal Constraints 

Table 18: Thermal Constraints – Data Requirements 

Category Data Description Frequency Total Time 
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Local Network 

Characteristics 

Relatively static 

characteristics of the 

network (e.g., size of cables, 

type of cables etc.). 

Desired refresh 

frequency (at 

discretion of 

model user 

provided data 

sources can 

support choice). 

Forecast 

for future 

period of 

interest.  

(Dynamic) Line 

Ratings 

Dynamically calculated line 

ratings, based upon 

temperature, wind speed / 

direction, conduction 

direction, line sag etc. 
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Weather 

Weather variables, including 

temperature, wind speed / 

direction etc. 

Network 

Configuration 

More variable network 

elements, such as TO / DNO 

outages, voltage control 

circuits in / out, internal 

HVDC flow settings, quad 

booster tap positions, 
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intertrip in / out, substation 

configuration etc. 

Generation, 

Demand, and 

Interconnector 

Forecasts 

Forecasts for generation, 

demand and interconnector 

flow. 

System 

Operating 

Plans 

Both energy and 

transmission system 

operating plans. 

 

As indicated in the process diagram, line ratings are to be created and shared by the 

Transmission Operators, and as such are categorised as an externally owned data source. 

Generator Stability Constraints 

Table 19: Generator Stability Constraints – Data Requirements 

Category Data Description Frequency Total Time 

R
e

la
tive

ly S
ta

tic
 / 

E
x

te
rn

a
lly O

w
n

e
d

 

D
a

ta
 S

o
u

rce
s 

Local Network 

Characteristics 

Relatively static 

characteristics of the 

network (e.g., size of cables, 

type of cables etc.). 

Desired refresh 

frequency (at 
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model user 

provided data 

sources can 

support choice). 

Forecast 

for future 

period of 

interest. 
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Faults Faults to be tested. 

Network 

Configuration 

More variable network 

elements, such as TO / DNO 

outages, substation 

configuration, SSSC modes, 

TCSC / series capacitors / 

ASACS in / out, intertrip in / 

out etc. 

Generation, 

Demand, and 

Interconnector 

Forecasts 

Forecasts for generation, 

demand and interconnector 

flow. 

System 

Operating 

Plans 

Both energy and 

transmission system 

operating plans. 
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Voltage Constraints 

Table 20: Voltage Constraints – Data Requirements 

Category Data Description Frequency Total Time 

R
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Local Network 

Characteristics 

Relatively static 

characteristics of the 

network (e.g., size of cables, 

type of cables etc.). 

Desired refresh 

frequency (at 

discretion of 

model user 

provided data 

sources can 

support choice). 

Forecast 

for future 

period of 

interest. 

Generator 

Characteristics 

Relevant generator 

characteristics, e.g., reactive 

power capability. 
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Voltage Profile 

Intended voltage profile 

based on forecasted 

demand. 

Network 

Configuration 

More variable network 

elements, such as TO / DNO 

outages, substation 

configuration, SSSC modes, 

TCSC / series capacitors / 

ASACS in / out, intertrip in / 

out etc. 

System 

Operating 

Plans 

Both energy and 

transmission system 

operating plans. 

 

RoCoF / Inertia / Largest Loss Constraints 

Table 21: RoCoF / Inertia / Largest Loss Constraints – Data Requirements 

Category Data Description Frequency Total Time 

R
e

la
tive

ly S
ta

tic / E
xte

rn
a

lly O
w

n
e

d
 

D
a

ta
 S

o
u

rce
s 

Network 

Model 
Required network model. 

Desired refresh 

frequency (at 

discretion of 

model user 

provided data 

sources can 

support choice). 

Forecast 

for future 

period of 

interest. 

Generator 

Characteristics 

Relevant generator 

characteristics, e.g., inertia 

power. 

Fault 

Understanding 

Understanding of potential 

faults and associated 

tripping effect on 

generation. 

Contract 

Information 

Understanding of which 

units are able to provide 

reserve. 
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Largest 

Demand Loss 

Largest demand loss, as 

usually defined. 

Largest 

Generation 

Loss 

Largest generation loss, as 

usually defined. 

System 

Operating 

Plans 

Both energy and 

transmission system 

operating plans. 

 

5.2.5.4 Architectural / Modelling Considerations 

Power Flow Modelling 

As explicitly noted in the above process diagrams, the proposed high-level architecture 

requires suitable power flow modelling for all constraint types. It is assumed that this 

requirement is not a limitation, due to existing capability and plans around NCMS. However, 

should this present an issue, one would have to carefully consider how power flow 

modelling integrates into the final solution. 

Line Rating Ownership 

As noted multiple times above, it is assumed going forward that line ratings (either static or, 

preferably, dynamic) will be wholly owned by the Transmission Operator (TO) and therefore 

not in scope for ESO operations. These line ratings are considered a crucial element of the 

thermal constraint calculations, and establishing a reliable connection to a trustworthy data 

source is therefore very important. 

TO-calculated line ratings may be considered more reliable, though this obviously places 

the ESO one-step removed from data generation. As such, there are associated 

considerations in the Explainable AI space (see below). 

Constraint Groups vs. Circuit-Level Constraints 

As noted above when discussing the High-Level Google X Report Interpretation, any future 

vision concerning transmission constraint modelling must consider whether the current 

“constraint group” approach is the most appropriate form of output.  

The most obvious alternative would be a more detailed, granular approach – outputting a 

set of specific circuit / line-level constraints to adhere to. Conversely, due to the current 

effectiveness and usability of constraint groups, there would be no acknowledgeable 

benefit in looking to shift to an even higher level of aggregation above those. The two 

realistic options are therefore constraint groups or the more detailed circuit-level 

constraints.  

There appears to be widespread appreciation that more granular constraints would provide 

benefit through additional insight. However, one limiting factor is the associated 

computational requirement. Aggregation to constraint groups provides a less 
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computationally intensive view which can be more easily managed in an optimisation 

environment. 

Post-Event Validation Processes 

A post-event analysis module is only explicitly included for the (comparatively very regular) 

thermal constraint type events. This supports continuous improvement of the calculations 

by establishing if the generated constraints were valid. However, as noted, the relevant data 

should be stored and accessible to various groups, and this post-event analysis module 

does not necessarily sit within the control centre capability25. 

As described above, for the other (rarer) constraint type events, a post-event analysis of 

this type is considered to be out of scope for the control room balancing process, and thus 

not included in the input data models. Instead, a (likely more manual) investigation is 

expected to be carried out elsewhere post an actual event. 

Data Relationships to the Optimiser(s) 

The design of the optimiser modules will determine the exact form of required input types. 

Architectural questions arising at this stage focus on whether just the constraints will be fed 

into the optimiser (as implied in the above process diagrams), or whether additional data 

such as network characteristics should also be inputs. 

5.2.5.5 Scenario Testing Capability and Output 

As indicated in the process diagrams, there is intended to be a scenario building capability 

for each of the explored constraint problem types. This would enable a view of constraint 

output sensitivity to various forecasted inputs. 

A more holistic view of scenario testing considerations to ensure consistency across 

multiple models is explored within the Architecture deliverable. 

5.2.6 Data Gap Analysis 

As is to be expected when defining a new, innovative capability, none of the existing or 

planned processes completely meet the requirements outlined in “Required Final 

Capability”. However, mapping said requirements to existing data sources and techniques 

provides a clearer view of missing elements, as well as next steps. 

As noted previously, the true gap analysis deliverable sits separately to this report, and the 

below section therefore comments only on data availability and quality. 

 
25 “The working assumption is that this process would be enabled by a data warehouse holding 
information on relevant decisions and production plans for a given time period to allow post-event 
analysis by various groups. This process is therefore not currently considered in scope for the control 
room.” 
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5.2.6.1 Overview 

The level of maturity observed in the existing transmission constraint calculations means 

that, comparatively to other areas, the data gap is small. Primary focus lies on the 

ownership and required quality / granularity of external data sources (e.g., dynamic line 

ratings). 

5.2.6.2 Availability of Data 

Without the requirement for multiple years of training data, the Transmission models are 

not subject to the historic data availability issues observed in other areas.  

Further, the majority of data inputs are either relatively static, externally owned, or 

assumed to flow from other models / ESO systems. Given the level of work already 

completed in the Transmission space, no significant data availability issues are anticipated. 

Table 22: Transmission Models (All Explored Problem Types) – Input Data Availability 

Category Data Time Currently Understood Availability 
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Local Network 

Characteristics 

Forecast 

for 

future 

period of 

interest.  

Available, (relatively) static 

information. 

(Dynamic) Line Ratings 

Assumed to be created and owned 

by the TOs. 

[Pending conversation regarding 

ownership and required frequency, 

granularity, format etc.] 

Generator Characteristics 
Available, (relatively) static 

information. 

Network Model Available and utilised. 

Fault Understanding Assumed SME knowledge. 

Contract Information 
Available, (relatively) static 

information. 
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Weather Forecast data available and utilised. 

Network Configuration 
To be set as part of scenario 

building. 

Generation, Demand, and 

Interconnector Forecasts 

Assumed to be available from other 

models within the overall 

architecture. 

System Operating Plans Produced and utilised. 

Faults 
To be set as part of scenario 

building. 

Voltage Profile Produced and utilised. 

Largest Demand Loss Produced and utilised. 
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Largest Generation Loss Produced and utilised. 

 

5.2.6.3 Data Quality / Granularity Analysis 

As before, data has not been able to be extracted for IBM-run data quality analysis, with 

comments instead reflecting the current understanding of relevant data quality and 

granularity. 

There are no known significant data quality issues in this area, in part due to the relatively 

static or user-defined nature of many of the data sources. Unknown factors for 

consideration include: 

• The agreed quality and granularity of any TO-produced dynamic line rating data – 

this must strike a balance between the ideal modelling level and feasibility based 

upon line rating calculation complexity / input data. 

• The accuracy and granularity of current weather forecasts for scenario building. The 

detailed technical definition of the individual problem type models will inform the 

necessary requirement. 

5.2.7 Regulatory Considerations, Explainable AI, and Process Impacts 

As with the other modelling areas, implementation of such a final vision methodology raises 

points for consideration around explain-ability etc.  

5.2.7.1 Dispatch Instructions 

As for all Input Data models, the previously discussed principles around the ability for 

humans to understand, analyse, and improve the underlying dispatch instruction logic apply 

here. In the case of Transmission, arising questions for scrutiny may include: 

• In situations where the lowest price units are not utilised, what are the underlying 

reasons? Is there, for example, a particular binding transmission constraint altering 

the optimum solution? To what degree are said transmission constraints altering the 

optimum solution? Are the generated transmission constraints accurate? 

Regarding accuracy of constraints, some of these questions may be answered by the post-

event validation processes described above. 

5.2.7.2 Line Rating Ownership 

Given the line rating TO ownership model discussed above, the quality and availability of 

line rating data sits outside of ESO’s responsibility. In order to cover the full landscape of 

Explainable AI considerations, there requires a level of transparency around the input data 

and processes involved in producing the line ratings. This likely requires a contractual 

change to the ESO relationship with the TOs, ensuring that this level of transparency is 

achieved. 
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5.2.7.3 Impact on Roles and Processes 

As further noted by the ESO Operational Manager26 with regards the Transmission 

elements, any proposed models of the above types will require significant changes in 

existing processes and role responsibilities. These should clearly be considered carefully 

when planning development and incremental implementation stages. 

“The TAEs processes are likely to change depending on what transmission optimisation is 

done within the SCED and what needs to be set up through the Adaptive Transmission 

modelling. The TSEs are also likely to be involved in these processes as well. The TSM will 

also be involved as they will need to agree the short-term transmission plan.” 

5.2.8 Next Steps 

The separately delivered “Roadmap” output will specify next steps in working towards the 

more holistic longer-term end vision. 

However, key next steps highlighted above include: 

1. More detailed analysis of the 11 constraint types to validate the optimiser-suitability 

conclusions drawn. As detailed above, this analysis would categorise the constraint 

types into the As-Is, Post-Process Automated Check, and Inclusion in the Optimiser 

groups. 

2. Discussion with TOs regarding the ownership, format, and required frequency of 

dynamic line ratings. 

3. Initial Data Science workstream activities (see 4.2.1). 

 
26 Virtual Energy System - Advanced Dispatch Optimiser Google X Comparison (April 2022) 
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5.3 Adaptive Interconnector Models 

5.3.1 Overview 

The Adaptive Interconnector Models described by Google X Tapestry in the output 

document Advanced Dispatch Optimizer System Roadmap Report have a single primary 

output: 

• Probabilistic scenario testing capability to forecast the likely interconnector flows 

under a variety of potential conditions. 

The idea behind this capability is to provide operators with more accurate forecasts of 

interconnector flow and capabilities, thus aiding dispatch decision-making. 

The detail around this specification is given in the “Required Final Capability” section 

below, with particular focus on this scenario testing capability and associated options (as 

previously). 

The interconnector model sections below aim to outline some of the current and planned 

interconnector forecast capabilities, detail the final vision (highlighting any decision points 

for consideration), and discuss some comparative gaps. [Note: The main As-Is analysis and 

gap analysis sit within a different deliverable but relevant data points are discussed here.] 

5.3.2 Existing and Planned Capabilities 

[See As-Is deliverable for full overview.] 

Below is an overview of some relevant elements but, as noted above, the true As-Is 

analysis sits separately to this report, and as such the below is far from exhaustive. 

This process-flow diagram provides a high-level view of the current trading process, noting 

the relationships between the ESO control room, ESO trading team, and trading counter 

parties. 

 

Figure 19: Blueworks Live – Interconnector Trading Process 
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Briefly, interconnectors are currently modelled in both online and offline analysis tools 

(PNA and OLTA, respectively). However, these are modelled as static generators, as 

opposed to full High-voltage DC (HVDC) models. 

Power Network Analysis (PNA) 

As detailed more thoroughly in the Transmission model section above, PNA is a real-time 

analysis tool that uses a real-time flow of data to generate a view of current system 

conditions (State Estimation). It then runs a series of contingencies based upon this. With 

focus on real-time, no forecast data is used within PNA. 

Offline Transmission Analysis (OLTA) 

At a high level, OLTA is an offline network study model (i.e., it is not fed by real-time data) 

that enables teams to study scenarios for outage planning in the control room, as well as 

longer term future planning.  

Crucially in the context of future data models, neither of these existing systems is used to 

forecast interconnector flows. At present, interconnector flows (export to the continent) are 

not considered as part of forecast demand, but prediction of flows is of interest to the 

trading team with regards anticipating any commercial actions. 

A final utilised tool within the interconnector space is AMIRA. Unlike the tools detailed 

above, AMIRA is a third-party capability and hence the underlying methodology etc. is not 

owned and controlled by ESO.  

AMIRA 

AMIRA is a third-party tool used by the control room and interconnector trading team. It is 

used to forecast interconnector output changes due to relative GB vs. non-GB price 

changes and provides the associated forecast error probability. This is the only digital tool 

that the ESO uses to forecast interconnector flows. 

Whilst this tool is arguably useful in the absence of any other forecasts, feedback suggests 

that predictions are often incorrect and are not generally trusted. 

5.3.3 Required Final Capability 

The required final capability discussed below interprets the description provided in Google 

X Tapestry’s Advanced Dispatch Optimizer System Roadmap Report, providing a much 

greater level of detail, and highlighting arising decision points / considerations. 

Of all the adaptive input models highlighted in the Tapestry report, this model group has the 

shortest dedicated description, at just 11 lines. Consequently, as before, multiple 

assumptions are required to form a full interpretation.  

Further, Tapestry notes that “To our knowledge, no such adaptive interconnector modelling 

approach has been implemented by a Grid Operator”, thus emphasising the innovative 

nature of this element. 
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The interconnector model aims to provide a view of predicted (half-hourly27) interconnector 

flow under given scenario conditions. This considers real-time flows, scheduled 

interconnector flows, flow trends, and market conditions. In other words, the model aims to 

answer the question: 

Given a prescribed set of forecasted scenario conditions, what is the forecasted actual flow 

on the interconnectors (prior to any further required reactive manual trading / intervention 

post-optimiser run)? 

The below figure provides an initial high-level view of the overall process for implementing 

this model.

 
27 As before, half-hourly is the minimum temporal granularity required. Interpolating for shorter 

steps within the dispatch process would likely provide further beneficial insight. 
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5.3.3.1 Overview 

 

Figure 20: Interconnector Models – Overall High-Level Process Flow 
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For a brief description of these process stages, see section 5.1.3.1. 

The model in question uses supervised learning techniques to predict the actual (half-

hourly) interconnector flow, for each interconnector, under given scenario conditions.  

Considerations around the form of the model output, as well as the final output from 

potentially running multiple scenario tests to account for uncertainty in the forecasted input 

variables, are discussed at length in sections “Modelling Approach Considerations” and 

“Scenario Testing Capability and Output”. These sections explore the possibilities of 

probabilistic base models (as opposed to point estimates) and probabilistic outputs from 

scenario testing28. 

5.3.3.2 Data Requirements Overview 

Within the process flow shown, data requirements can broadly be split into two categories: 

Historic Training Data and Scenario Input Data. Potential data sources are discussed in the 

data availability section. 

Historic Training Data 

Training data refers to the set of historical (labelled) data that will be used to train the first 

iteration of the model. Said training data will later be updated over time in line with a 

defined re-training schedule. 

The training data for this model consists of Historical Interconnector Flows (i.e., What has 

happened previously with regards scheduled vs. actual interconnector flow?) and Historic 

Market Data for analysis (i.e., How have changing market conditions affected the 

interconnector flows?). 

Table 23: Interconnector Models – Training Data 

Category Data Description Frequency Total Time 
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Scheduled 

interconnector 

flow trends* 

Scheduled flow profile of 

electricity across the 

various interconnectors 

over time. 

Half-hourly 

(for each 

dispatch 

interval) 
At least 1 

year, 

preferably 

approx. 3 

years. 

Actual 

interconnector 

flow trends 

Actual flow of electricity 

across the various 

interconnectors over 

time. 

Half-hourly 

(for each 

dispatch 

interval) 

H
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GB Market 

Data 

GB energy market 

prices, volumes and 

associated trends. 

Half-hourly 

(for each 

dispatch 

interval) 

 
28 As noted previously, when viewed through a holistic architectural lens, the scenario-based 

approach provides consistency across the model types and enables coherent testing of output 

sensitivity to conditions (see Architecture deliverable). 
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Foreign 

Market Data 

Foreign energy market 

prices, volumes and 

associated trends. 

Half-hourly 

(for each 

dispatch 

interval) 

 

*Note: In order to train the model with realistic scheduling timeframes, the core focus for 

corresponding scheduled variables will be at point 𝑥 minutes before actual, where 𝑥 

represents the time before real-time at which the model would be run in practice. 

As previously, there is a balance to be struck between model accuracy and data gathering 

complexity. It is important to remember that further re-training will be continuous as more 

data is collected, thus improving the accuracy of the model. 

Scenario Input Data 

Scenario Input Data here refers to the set of information fed into the trained model to 

produce the probabilistic output desired. What the model requires as input is a set of 

forecasted data covering the power market conditions as well as interconnector 

information. 

In other words, for the given future time in question, the model input data consists of, for 

each interconnector, Interconnector Scenario Data (i.e., What are the current and 

scheduled flow trends to be investigated?) and Forecasted Market Data (i.e., How do we 

expect the market factors affecting flow trends to be behaving over the time in question?). 

Table 24: Interconnector Models – Scenario Input Data 

Category Data Description Time 
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Real-time power 

flows on 

transmission 

interconnectors 

Real-time power flows across the 

interconnectors at point of model run. 

Given 

time 

period in 

question. 

Scheduled 

interconnector 

flow trends 

Scheduled flow profile of electricity across 

the various interconnectors. 
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GB Market Data 
GB energy market prices, volumes and 

associated trends. 

Foreign Market 

Data 

Foreign energy market prices, volumes and 

associated trends. 

 

[Note: Given the number of variables, the scenario definition process itself could exist as a 

separate problem. Management of this is briefly discussed in the below section “Scenario 

Testing Capability and Output”, as well as within the Architecture deliverable.] 
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5.3.3.3 Data Models 

The below logical entity-relationship diagrams provide a view of how both the scenario 

input data sources, and separately the training data sources, could relate and be 

structured.29 

 

Figure 21: Interconnector Models – Example view of data model for scenario input data sources 

This model exemplifies the relationships between the different data sources and provides a 

practical view as to one way the end vision data structures could be realised.  

As an example, the scheduled interconnector flows are linked via a key to the specific 

interconnector ID and time interval being trialled. Shown by the connection types in the 

above diagram, each set of scheduled flows will join to precisely one Interconnector / Time 

Interval combination key. The interconnector ID can then be further used to gather 

additional information about the interconnector such as related foreign market etc. 

Similarly for the listed historic training data: 

 
29 See section 7 for overview of entity-relationship notation. 



Page | 89  

 

 

Figure 22: Interconnector Models – Example view of data model for training data sources 

5.3.3.4 Modelling Approach Considerations 

Due to the similar problem structure and model type, the considerations outlined in the 

Generation Models section (Regression vs. Classification and Deterministic vs. Probabilistic) 

are also valid here. To avoid repetition, please refer to section 5.1.3.4 for definition and 

discussion of these points. 

Considerations for Interconnector Input Data Models 

An equivalent algorithm matrix to that produced for Generation Models is shown below. 
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Figure 23: Interconnector Models – Matrix of modelling techniques 

5.3.3.5 Scenario Testing Capability and Output 

As with the modelling approach, the considerations arising around running of the scenario 

testing capability (deterministic single run vs. deterministic multi-run vs. probabilistic single 

run etc.) are identical to those discussed in section 5.1.3.5. These are therefore not 

repeated in full here. 

However, equivalent views of sample parameter spaces and distribution output from a 

deterministic multi-run approach are shown below. 

Table 25: Interconnector Models – Example parameter space for scenario testing 

Category Data Type Parameter 
e.g., Discrete 

Range 
e.g., Distribution 

In
te

rco
n

n
e

cto
r S

ce
n

a
rio

 D
a

ta
 

Real-time 

power flows on 

transmission 

interconnectors 

Real-time 

measured flows on 

a given 

interconnector 

(MW) 

N/A – measured 

value 

N/A – measured 

value 

Scheduled 

interconnector 

flow trends 

Scheduled flow 

trend for a given 

interconnector – 

likely taking the 

form of a series of 

(time, MW value) 

pairs 

For the given 

time unit, 

 

[900, 950, …] 

For the given 

time unit, 

 
Δ ~ Ν(1200,150) 

Etc.    

F
o

re
ca

ste
d

 

M
a

rk
e

t 

D
a

ta
 

GB Market Data 

Forecasted cost 

profile for GB 

generation – likely 

taking the form of a 

For the given 

time unit, 

 

[1.00, 1.15, …] 

For the given 

time unit, 

 
𝜗 ~ Γ(2,1) 
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series of (time, 

£/MWh value) pairs 

Etc.   

Foreign Market 

Data 

Forecasted cost 

profile for foreign 

market import – 

likely taking the 

form of a series of 

(time, £/MWh 

value) pairs 

For the given 

time unit, 

 

[1.00, 1.15, …] 

For the given 

time unit, 

 
𝜗 ~ Γ(2,1) 

Etc.  
 

 

[Note: example discrete ranges and distributions are purely illustrative.] 

 

Figure 24: Interconnector Models – Example distribution output from running multiple trials with a deterministic 
model 

5.3.4 Data Gap Analysis 

As is to be expected when defining a new, innovative capability, none of the existing or 

planned processes completely meet the requirements outlined in “Required Final 

Capability”. However, mapping said requirements to existing data sources and techniques 

provides a clearer view of missing elements, as well as next steps. 

As noted previously, the true gap analysis deliverable sits separately to this report, and the 

below section therefore comments only on data availability and quality. 

5.3.4.1 Overview 

Forecasting of interconnector flows is inherently difficult due to its dependency on market 

movements (see discussion in 5.3.6 below). As a result, an approach of this type is 
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relatively experimental, and the required data is not necessarily available and / or at the 

correct level of granularity. 

5.3.4.2 Availability of Data  

The below tables provide an overview of the currently understood data availability gap. 

Historic Training Data 

Most elements of the historic training data are available in some form (perhaps requiring 

purchase). The next stage of analysis would be to establish data quality and whether or not 

these datasets are of sufficient granularity for the given model purpose. 

Table 26: Interconnector Models – Training Data Availability 

Category Data Frequency Total Time 
Currently Understood 

Availability 

H
isto

ric
a

l In
te

rco
n

n
e

c
to

r D
a

ta
 

Scheduled 

interconnector 

flow trends 

Half-hourly 

(for each 

dispatch 

interval) 

At least 1 

year, 

preferably 

approx. 3 

years. 

Historic scheduled 

flows available. 

 

Arising question: Are 
scheduled plans from, 
e.g., day-ahead 
timescales sufficient 
for this purpose? 

Actual 

interconnector 

flow trends 

Half-hourly 

(for each 

dispatch 

interval) 

Publicly available data 

through multiple 

sources (e.g., 5-minute 

frequency dating back 

to 2016 via Elexon30). 
H

isto
ric M

a
rk

e
t D

a
ta

 

GB Market 

Data 

Half-hourly 

(for each 

dispatch 

interval) 

Historic data not 

currently explicitly held 

but theoretically 

available (perhaps 

requiring purchase). 

 

Note: Just the final 
values would likely not 
provide sufficient levels 
of granularity for a 
given time period. 

Foreign 

Market Data 

Half-hourly 

(for each 

dispatch 

interval) 

Historic data not 

currently explicitly held 

but theoretically 

available (perhaps 

requiring purchase). 

 

 
30 https://bmrs.elexon.co.uk/interconnector-flows 
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Note: Just the final 
values would likely not 
provide sufficient levels 
of granularity for a 
given time period. 

 

Scenario Input Data 

Availability of the Scenario Input Data “Additional” variables is inherently related to the 

above availability of Training Data. The difference arises in the time horizon being 

considered, with Training Data being historical and Scenario Input Data being forward-

looking. 

Whilst some variables are readily available, the limited forecasting of market conditions 

may lead to difficulty in defining relevant, accurate scenarios.  

Table 27: Interconnector Models - Input Data Availability 

Category Data Time Currently Understood Availability 

In
te

rco
n

n
e

c
to

r 

S
c

e
n

a
rio

 D
a

ta
 

Real-time power 

flows on 

transmission 

interconnectors 

Given time 

period in 

question. 

Real-time flow data is measured, 

recorded, and displayed live in the 

control room. 

Scheduled 

interconnector 

flow trends 

Default plans exist for each 

interconnector based upon day-

ahead prices. 

F
o

re
ca

ste
d

 M
a

rk
e

t D
a

ta
 

GB Market Data 

Whilst a range of scenarios could 
simply be created and tested, there 
is limited market forecasting to base 
these on. 
  

Market data of this type is not 

explicitly forecasted, with traders 

instead using their experience / 

intuition when observing trends. 

Pricing of forward products provides 

an indication of expected market 

movement – however, the UK 

market is not particularly liquid, 

making this more difficult.   

Foreign Market 

Data 

Whilst a range of scenarios could 
simply be created and tested, there 
is limited market forecasting to base 
these on. 
 
Market data of this type is not 

explicitly forecasted, with traders 

instead using their experience / 
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intuition when observing trends. 

Pricing of forward products provides 

an indication of expected market 

movement – foreign markets are 

often more liquid than the UK, 

making this more realistic as an 

indicator.   

 

5.3.4.3 Data Quality / Granularity Analysis 

As before, internal data has not been able to be extracted for IBM-run data quality analysis, 

with comments instead reflecting the current understanding of relevant data quality and 

granularity. 

Actual Interconnector Flows 

Historic actual interconnector flows are available at 5-minute frequency from present back 

to 1st January 2016 via Elexon31, with real time data uploaded with a lag of approximately 

ten minutes. This dataset covers the interconnectors:  

• Belgium (Nemolink) 

• Eleclink (INTELEC) 

• France (IFA) 

• IFA2 (INTIFA2) 

• Ireland (East-West) 

• Netherlands (BritNed) 

• North Sea Link (INTNSL) 

• Norther Ireland (Moyle) 

MW values are given to the nearest integer. This data is considered to be of sufficient 

granularity for the purposes listed. 

Forecasted Market Data 

As mentioned above in the availability comments, any forecasted market data is generally 

considered to be of poor quality and accuracy, with traders relying mainly on intuition. The 

arising question regarding these data sources is: 

Can forecasted market data accuracy be significantly improved to a usable level (e.g., using 

different input data, modelling techniques etc.), or does the inherent sporadic nature of the 

market set an accuracy ceiling below usable level? 

The answer to this question is dependent on the definition of “usable level” of accuracy. 

Additionally, answering the question thoroughly would require a separate data science 

project to find the likely accuracy ceiling. 

  

 
31 https://bmrs.elexon.co.uk/interconnector-flows 
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Further Considerations 

Additional points for consideration include: 

• The granularity of any available historic scheduled flows – the detailed technical 

model definition will inform if this granularity is sufficient. 

• The usability of historic market data, which is theoretically available though may 

require purchase. As noted above, just the final values would likely not provide 

sufficient levels of granularity for a given time period. 

5.3.5 Regulatory Considerations, Explainable AI, and Process Impacts 

As with the other modelling areas, implementation of such a final vision methodology raises 

points for consideration around explain-ability etc. 

5.3.5.1 Trading Decisions 

For interconnectors, any forecasted flows would have clear impacts on trading decisions 

and processes. A sufficient level of understanding and AI transparency would likely be 

required to justify the cost of said trading decisions. 

However, the potential difficulties in developing an accurate model (see discussion point 

below) could result in a perceived “untrustworthiness” of the forecasted flows. In this case, 

even a thorough understanding of the underlying logic may not be adequate to defend 

resultant trading decisions. 

5.3.6 Discussion Point: Is attempted forecasting of interconnector flow a 

worthwhile endeavour? 

As noted above, the fast-shifting nature of interconnector flows, due in part to their close 

dependencies on market conditions, make them particularly difficult to accurately forecast. 

Whilst the overall dynamics of the system are relatively well understood, the difficulties 

arise in trying to accurately forecast the underlying market conditions. 

The subsequent uncertainty associated with these forecasts therefore raises the question: 

Is attempted forecasting of interconnector flow a worthwhile endeavour? 

In other words, would “perfect” data and modelling methodology ever be able to capture 

the intricacies and volatile profile of interconnector flows to a useful level? 

In answering this question thoroughly, one must consider: 

• The incremental value add of improved forecasting, 

• The balance between said incremental value and development / implementation 

costs – how accurate would forecasting have to be for this approach to be 

worthwhile? 

• The upper limit of forecasting accuracy, 

• Etc. 
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With feedback suggesting that current interconnector forecasts are widely speculative, 

significant improvements would be required to build a usable, useful asset. 

5.3.7 Next Steps 

The separately delivered “Roadmap” output will specify next steps in working towards the 

more holistic longer-term end vision. 

However, as indicated above, there are a few immediate steps that can be taken to progress 

this area. These include: 

1. Further detailed analysis of data sources (some requiring purchase) to establish 

whether granularity and quality are sufficient for this purpose – in particular, the 

timescales of “scheduled flows”, and ability to forecast market data in the creation 

of scenarios. 

2. Discussion around anticipated value and likely accuracy of this model given the 

relatively sporadic, rapidly shifting nature of interconnector flows (see discussion in 

section 5.3.6) – initial data science analysis could provide a view of likely accuracy 

limits. 

3. Initial Data Science workstream activities (see 4.2.1). 
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5.4 Adaptive Distributed Energy Resource (DER) Models 

5.4.1 Overview 

The Adaptive Distributed Energy Resource (DER) Models described by Google X Tapestry in 

the output document Advanced Dispatch Optimizer System Roadmap Report are analogous 

to the generation models in structure. However, as the name suggests, the focus is on all 

visible DER resources participating in the market. Visibility to system operators is a crucial 

attribute, with embedded DERs that are not visible being handled within the Net Demand 

models. Note the term DER here may refer to individual resources or aggregated resources 

as required. 

[Clarification from Google X suggests that grid scale duration limited assets, such as 

batteries and pumped storage, are included within the Adaptive Generation model group, 

whilst, for example, smaller instructible batteries connected at the distribution level and 

participating in the markets are considered as part of this section.] 

The overall model purpose is “to correct, enhance and create distributed energy resource 

input data” for the optimiser module. This purpose translates into two primary outputs: 

• Probabilistic scenario testing capability to forecast the likely response to given 

dispatch instructions, 

• Correction / validation of held static data (e.g., Megawatt (MW) limits, ramp rates32). 

The core functionality centres around the scenario testing capability, with the improvement 

of held static data being a useful secondary output. When viewed through a holistic 

architectural lens, the scenario-based approach provides consistency across the model 

types and enables coherent testing of output sensitivity to conditions (see Architecture 

deliverable). Further, whilst it is noted that market participants should generally be 

providing accurate technical parameters, this correction / validation will catch any 

discrepancies in performance.   

The detail around this specification is given in the “Required Final Capability” section 

below, with particular focus on the scenario testing capability and associated options. 

The DER model sections below aim to outline some of the current and planned DER 

forecast capabilities, detail the final vision (highlighting any decision points for 

consideration), and discuss some comparative gaps. [Note: The main As-Is analysis and 

gap analysis sit within a different deliverable but relevant data points are discussed here.] 

5.4.2 Existing and Planned Capabilities 

[See As-Is deliverable for full overview.] 

Below is an overview of some relevant elements but, as noted above, the true As-Is 

analysis sits separately to this report, and as such the below is far from exhaustive.  

 
32 Given the nature of DERs, this data may not be static for some resources. 
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There is no current explicit ESO capability to forecast the output of aggregated DERs, or 

individual resources. The generation output of distribution level resources is currently 

forecasted at GSP and National levels using PEF and AMIRA. 

As described previously: 

5.4.2.1 EFS / PEF Generation Capability 

The Energy Forecasting System (EFS), gradually being replaced in functionality by the 

Platform for Energy Forecasting (PEF), covers multiple areas. 

At a high level, PEF focuses on four core products (not all relating to generation): 

1. National demand forecast, 

2. Wind power generation forecast, 

3. Solar power (Photovoltaic; PV) generation forecast, 

4. Grid supply point (GSP) forecast for demand, solar, and wind. 

Machine Learning models are used for the GSP and PV generation products, and a similar 

model for wind generation is also under construction. Current approaches are generally 

deterministic (outputting a single, fixed solution per run) and provide a set of forecast 

variants (minimum, maximum and average). PEF feeds into BM-SPICE, which subsequently 

feeds into BM-SORT. 

5.4.2.2 AMIRA 

AMIRA is a third-party tool used by the control room to forecast metered wind generation 

and the associated error probabilities. None of the outputs feed into any other systems in 

the control room, with elements being manually typed over by the OEM. Feedback suggests 

that AMIRA provides a consistently more accurate forecast than PEF. 

5.4.3 Required Final Capability 

The required final capability discussed below interprets the description provided in Google 

X Tapestry’s Advanced Dispatch Optimizer System Roadmap Report, providing a much 

greater level of detail, and highlighting arising decision points / considerations. 

Tapestry notes that “To our knowledge, no such adaptive DER modelling approach has been 

implemented by a Grid Operator”, thus emphasising the innovative nature of this element. 

Each DER model aims to provide, for a given resource / aggregated resource group, a half-

hourly33 view of expected actual output (in MW) under a given set of hypothetical dispatch 

instructions. In other words, the model aims to answer the question: 

 
33 Half-hourly is the minimum temporal granularity required. Interpolating for shorter steps within 

the dispatch process would likely provide further beneficial insight. 
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Given a set of dispatch instructions to test, combined with forecast input data such as 

weather, likely maintenance etc., what is the predicted actual MW output for a specified 

resource / aggregated resource group?34 

The below figure provides an initial high-level view of the required (supervised) model 

creation and scenario testing process. 

[Note: The previously mentioned similarity to the Generation models is clear in the below 

sections, with certain considerations repeated verbatim.]

 
34 Feedback suggests that a more appropriate question could focus on prediction of output before 

the instruction, as opposed to after (with units generally expected to deliver when instructed, and 

uncertainty arising from, for example, accuracy of PNs). Theoretically, this model type could answer 

both questions given the similar underlying data requirements, with the pre-instruction predicted 

output tested for relevant timeframes via a “blank” instruction. 
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5.4.3.1 Overview 

 

Figure 25: DER Models – Overall High-Level Process Flow 
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[Note: Feedback suggests that this outlined process is similar in principle to the PEF 

Machine Learning models, though their blended output is deterministic.]  

For a brief description of these process stages, as previously, see section 5.1.3.1. 

The model in question uses supervised learning techniques to predict the actual half-hourly 

MW output for a resource / aggregated resource group under given dispatch instructions.  

Considerations around the form of the model output, as well as the final output from 

potentially running multiple scenario tests to account for uncertainty in the forecasted input 

variables, are discussed at length in sections “Modelling Approach Considerations” and 

“Scenario Testing Capability and Output”. These sections explore the possibilities of 

probabilistic base models (as opposed to point estimates) and probabilistic outputs from 

scenario testing35. 

5.4.3.2 Data Requirements Overview 

Within the process flow shown, data requirements can broadly be split into two categories: 

Historic Training Data and Scenario Input Data. Potential data sources are discussed in the 

data availability section. 

Historic Training Data 

Training data refers to the set of historical (labelled) data that will be used to train the first 

iteration of the model. Said training data will later be updated over time in line with a 

defined re-training schedule. 

The training data for these models consists of, for each DER / DER group in question, 

Historical DER Data (i.e., What has happened previously with regards expected vs. actual 

outputs within the Balancing process?) and Additional Information for correlation tests (i.e., 

What external factors may account for any discrepancy observed in expected vs. actual 

output?).  

Table 28: DER Models – Training Data 

Category Data Description Frequency Total Time 

H
isto

rica
l D

E
R

 D
a

ta
 

DER / DER 

Group Offer 

Data 

Logged DER / DER group 

BOAs, Bid Offer Data (BOD), 

including increase / decrease 

limits and associated prices. 

Half-hourly (for 

each dispatch 

interval) 

At least 1 

year 

(Tapestry 

minimum), 

preferably 

approx. 3 

years (IBM 

view). 

Production 

Forecast 

Data 

DER / DER group forecast 

output figures over time 

(including PNs, FPNs). 

Half-hourly (for 

each dispatch 

interval) 

Instructed 

MW output 

Instructed MW output by 

DER / DER group over time. 

Half-hourly (for 

each dispatch 

interval) 

 
35 As noted previously, when viewed through a holistic architectural lens, the scenario-based 

approach provides consistency across the model types and enables coherent testing of output 

sensitivity to conditions (see Architecture deliverable). 
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Actual MW 

output 

Actual MW output by DER / 

DER group over time. 

Half-hourly (for 

each dispatch 

interval) 

A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 

Weather 

Weather data for each 

resource location 

(temperature, precipitation, 

UV levels, wind speed etc.). 

Half-hourly 

profiles 

Resource 

Conditions 

Resource conditions over 

time, including maintenance 

activities (both planned and 

unexpected outages). 

Ad-hoc 

Total System 

Demand 

Total system demand over 

time. 
Half-hourly 

Binding 

Transmission 

Constraints 

All active constraints over 

time (both planned and 

unexpected). 

Ad-hoc 

Dispatch 

State 

Dispatch state by resource 

over time (e.g., ramping up, 

holding etc.) – to understand, 

for example, ramp-up rates. 

Ad-hoc 

 

As previously, there is a balance to be struck between model accuracy and data gathering 

complexity. It is important to remember that further re-training will be continuous as more 

data is collected, thus improving the accuracy of the model. 

Scenario Input Data 

Scenario Input Data here refers to the set of information fed into the trained model to 

produce the probabilistic output desired. What the model requires as input is a set of 

forecasted data covering all the previously defined “Additional Information” variables 

(forecasted for the given timeframe in question), as well as the particular dispatch scenario 

to be tested. 

In other words, for the given future time in question, the model input data consists of, for 

each DER / DER group, Scenario Dispatch Data (i.e., What set of dispatch lever options are 

we looking to understand the impact of?) and Forecasted Additional Information (i.e., How 

do we expect the factors affecting dispatch response to be behaving over the time in 

question?). 

Table 29: DER Models – Scenario Input Data 

Category Data Description Time 

S
ce

n
a

rio
 

D
isp

a
tch

 

D
a

ta
 

Theoretical 

Dispatch 

Instructions 

Set of potential dispatch instructions to be 

tested in the model. 

Given 

future 

time 

period in 

question. 

Existing PNs for 

given period 

Existing DER / DER group PNs for the time 

period being considered. 
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DER / DER Group 

Offer Data 

Available DER / DER group Bid Offer Data 

(BOD), including increase / decrease limits 

and associated prices. 

(Relevance dependent on when the model is 

being run relative to the period in question.) 

F
o

re
ca

ste
d

 A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 

Weather 

Weather data for each generator location 

(temperature, precipitation, UV levels, wind 

speed). 

Resource 

Conditions 

Resource conditions over time, including 

maintenance activities (both planned and 

unexpected outages). 

Total System 

Demand 
Total system demand over time. 

Binding 

Transmission 

Constraints 

All active constraints. 

Dispatch State 
Dispatch state changes by resource over time 

(e.g., ramping up, holding etc.). 

 

[Note: Given the number of variables, the scenario definition process itself could exist as a 

separate problem. Management of this is briefly discussed in the below section “Scenario 

Testing Capability and Output”, as well as within the Architecture deliverable.] 

5.4.3.3 Data Models 

The below logical entity-relationship diagrams provide a view of how both the scenario 

input data sources, and separately the training data sources, could relate and be 

structured.36 

 
36 See section 7 for overview of entity-relationship notation. 



Page | 104  

 

 

Figure 26: DER Models – Example view of data model for scenario input data sources 

This model exemplifies the relationships between the different data sources and provides a 

practical view as to one way the end vision data structures could be realised.  

As an example, the dispatch scenario instructions to test within the DER models are linked 

via a key to the specific resource / resource group ID and time interval being trialled. Shown 

by the connection types in the above diagram, each set of instructions will join to precisely 

one Resource / Time Interval combination key, whilst each such key may link to multiple 

trial instructions. The Resource ID can then be further used to gather information such as 

location (at required level of granularity) to link weather forecasts etc. 

Similarly for the listed historic training data: 
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Figure 27: DER Models – Example view of data model for training data sources 

5.4.3.4 Modelling Approach Considerations 

Due to the almost identical problem structure and model type, the considerations outlined 

in the Generation Models section (Regression vs. Classification and Deterministic vs. 

Probabilistic) are also valid here. To avoid repetition, please refer to section 5.1.3.4 for 

definition and discussion of these points. 

Considerations for DER Input Data Models 

An equivalent algorithm matrix to that produced for Generation Models is shown below. 

 

Figure 28: DER Models – Matrix of modelling techniques 
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5.4.3.5 Scenario Testing Capability and Output 

As with the modelling approach, the considerations arising around running of the scenario 

testing capability (deterministic single run vs. deterministic multi-run vs. probabilistic single 

run etc.) are identical to those discussed in section 5.1.3.5. These are therefore not 

repeated in full here. 

However, equivalent views of sample parameter spaces and distribution output from a 

deterministic multi-run approach are shown below. 

Table 30: DER Models – Example parameter space for scenario testing 

Category Data Type Parameter 
e.g., Discrete 

Range 
e.g., Distribution 

F
o

re
ca

ste
d

 A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 

Weather 

Temperature (°C) [16, 17, …]  𝑇 ~ Ν(18,4) 

Wind speed (mph) [10, 12, …]  𝑣 ~ Γ(15,1) 

UV Index [3, 4, …] 𝜗 ~ Γ(7.5,1) 

Etc.   

Resource 

Conditions 

Active Maintenance 

Boolean 
[0, 1] 𝜅 ~ 𝐵𝑒𝑟(0.1) 

 Etc.   

Total System 

Demand 

Total demand for 

given area (MW) 
[500, 550, …] Δ ~ Ν(650,70) 

Etc.   
 

 

[Note: example discrete ranges and distributions are purely illustrative.] 

 

Figure 29: DER Models – Example distribution output from running multiple trials with a deterministic model 
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5.4.3.6 Further Considerations 

As in section 5.1.3.6. 

Additionally: 

Distribution System Operator (DSO) Ownership 

Put simply, should this detailed understanding of DERs be the responsibility of DSOs? Given 

the connection point of these resources is at the distribution level, one could argue that the 

DSOs are best placed to own this capability. If so, this has some implications regarding 

Explainable AI etc. (see discussion below).37 

Further, there are other reasons why this information may be of use to the DSOs – for 

example, predicting reverse power flows. Factors like this could become the primary drivers 

towards DSO ownership. 

Aggregation Concerns 

As noted, this capability is intended to model the response of individual resources or 

aggregated resources as required. The arising issue concerns the definition of aggregated 

resources and how they are treated with respect to generated constraints. 

Theoretically there is no current limit to the size of units that can be included as part of an 

aggregated resource. In addition, the individual units making up said aggregated resource 

could be geographically dispersed across multiple GSPs. Without full insight into the 

positions of the individual constituent units, one could “accidently” send instructions to a 

constrained area. This becomes particularly problematic if the instructed unit is large 

enough to noticeably impact the dispatch outcome38. 

Given this, an arising consideration is whether modelling of aggregated resources is 

sufficiently granular, or if more data is required on the individual constituent units. 

[Note: Discussions with the regulator regarding these issues are included as part of the 

roadmap deliverable.] 

5.4.4 Data Gap Analysis 

As is to be expected when defining a new, innovative capability, none of the existing or 

planned processes completely meet the requirements outlined in “Required Final 

Capability”. However, mapping said requirements to existing data sources and techniques 

provides a clearer view of missing elements, as well as next steps. 

As noted previously, the true gap analysis deliverable sits separately to this report, and the 

below section therefore comments only on data availability and quality. 

 
37 A potential area to explore is the DER visibility innovation project. 
38 Feedback suggests this is a rare occurrence currently due to the relatively small size of the 

individual units making up aggregated resources. However, as the market continues to grow, the lack 

of a unit size restriction may alter behaviour. 
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5.4.4.1 Overview 

Similar to the generation models, there are different forecasting and optimisation tools 

currently in use. The novelty here, again, lies in the prediction of discrepancy between FPNs 

altered by BOAs and actual output. 

5.4.4.2 Availability of Data 

The below tables provide an overview of the currently understood data availability gap. 

Note the parallels to the availability of generation model data. 

Historic Training Data 

There is a hope that some of this historic data may exist in yet unexplored data silos. 

However, the working theory from SMEs is that approx. 3 years of data collection in real 

time would be required in order to meet the historic “Additional Information” data 

requirements outlined39. 

Table 31: DER Models – Training Data Availability 

Category Data 
Frequency 

Required 
Total Time 

Currently Understood 

Availability 

H
isto

ric
a

l D
E

R
 D

a
ta

 

DER / DER 

Group Offer 

Data 

Half-hourly (for 

each dispatch 

interval) 

At least 1 

year 

(Tapestry 

minimum), 

preferably 

approx. 3 

years (IBM 

view). 

Available, stored in National 

Grid Economic Database, 

NED (from the start of New 

Electricity Trading 

Arrangements (NETA) in 

2001). 

Production 

Forecast 

Data 

Half-hourly (for 

each dispatch 

interval) 

Available, stored in NED 

(from the start of NETA in 

2001). 

Instructed 

MW output 

Half-hourly (for 

each dispatch 

interval) 

Available, stored in NED 

(from the start of NETA in 

2001). 

Actual MW 

output 

Half-hourly (for 

each dispatch 

interval) 

Available, stored in Data 

Historian. 

A
d

d
itio

n
a

l 

In
fo

rm
a

tio
n

 

Weather 
Half-hourly 

profiles 

Some wind related data 

available (wind speed vs. 

wind power), stored in NED 

– unsure of exact storage 

length. 

Alternatively available 

through MET Office Weather 

Data for Business (wind, 

 
39 It is worth noting that the full data requirements listed may not be necessary for a first model 

iteration. Analysis of model performance over time will indicate whether the currently unavailable 

variables will significantly improve forecast accuracy. 
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temperature, radiation 

levels etc.). 

Resource 

Conditions 
Ad-hoc 

Not aware of existence. 

Perhaps resources hold this 
historic data? 

Total System 

Demand 
Half-hourly 

Demand profiles kept for 

selected days (e.g., 

Coronations). Not aware of 

more extensive records. 

Binding 

Transmission 

Constraints 

Ad-hoc 
Not aware of any archiving 

of constraints. 

Dispatch 

State 
Ad-hoc 

Unclear – can perhaps be 

deduced but may not be 

required. 

 

Scenario Input Data 

Availability of the Scenario Input Data “Additional” variables is inherently related to the 

above availability of Training Data. The difference arises in the time horizon being 

considered, with Training Data being historical and Scenario Input Data being forward-

looking. 

Data groups required for scenario testing are generally more available, and hence not as 

restrictive to model development as the above training data. 

Table 32: DER Models – Input Data Availability 

Category Data Time Currently Understood Availability 
S

ce
n

a
rio

 D
isp

a
tch

 

D
a

ta
 

Theoretical Dispatch 

Instructions 

Given 

future time 

period in 

question. 

To be created as part of model input. 

Existing PNs for given 

period 

Received by ESO and available. 

[Quantity dependent on time horizon 

of future time period in question.]  

DER / DER Group 

Offer Data 

Received by ESO and available. 

[Quantity dependent on time horizon 

of future time period in question.] 

F
o

re
ca

ste
d

 A
d

d
itio

n
a

l 

In
fo

rm
a

tio
n

 

Weather Forecast data available and utilised. 

Resource Conditions 

Dependent on time horizons – not 

aware of longer-term planning from 

all individual resources. 

Total System Demand Forecast data available and utilised. 

Binding Transmission 

Constraints 

Forecast data available and utilised. 

[When considering short time 

horizons, active transmission 
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constraints can be obtained from the 

Adaptive Transmission Model.] 

Dispatch State 
Current dispatch states, requirement 

for “warming” etc. understood.  

 

[Note: The type and availability of this data stems from the fact that this model is 

specifically considering visible DERs participating in the market. Embedded DERs will, by 

definition, not have the same level of available data.] 

5.4.4.3 Data Quality / Granularity Analysis 

As expected, due to the similar underlying data sources, data quality and granularity 

comments noted in section 5.1.4.3 are also applicable here. 

5.4.5 Regulatory Considerations, Explainable AI, and Process Impacts 

As with other areas, there are again various points for consideration around explain-ability, 

impact on existing processes etc. 

5.4.5.1 DSO Ownership 

In the case of the potential DSO ownership model discussed above, the required DER data 

would sit outside of ESO’s responsibility. In order to cover the full landscape of Explainable 

AI considerations, there requires a level of transparency around the input data and 

processes involved in producing the desired output. This likely requires a contractual 

change to the ESO relationship with the DSOs, ensuring that this level of transparency is 

achieved. 

5.4.5.2 Aggregation Concerns 

As explained above, there are concerns around the treatment of aggregated resources, and 

the potential “accidental” instruction of dispatch in a constrained area. Explainable AI 

considerations in this area cover the understandability of output and subsequent action. If 

the data is of insufficient granularity to reach the level of clarity required, the model 

arguably falls short of explain-ability conditions. 

5.4.6 Next Steps 

The separately delivered “Roadmap” output will specify next steps in working towards the 

more holistic longer-term end vision. 

However, as indicated above, there are a few immediate steps that can be taken to progress 

this area. These include: 

1. Discussion with DSOs regarding the ownership of models relating to distribution 

network-connected assets. 
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2. Addressing of data availability issues by planning for a multi-year data collection 

period where necessary for model training purposes. 

3. Initial Data Science workstream activities (see 4.2.1). 
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6 Advanced Net Demand Forecast Module 

The Google X Tapestry report provides a brief description of a proposed Adaptive Net 

Demand Forecast Module. The overall quoted purpose of this module is to “create 

forecasts, probabilistic trajectories, and scenarios for Net Demand at a substation, regional 

and total market level”. This is to be achieved by utilising the synergy between two 

individual components: 

1. Demand Forecast and Consumer Behaviour, 

2. Embedded DER. 

These component models are explored separately below, though would work in 

combination to achieve the overarching goal above. 

Tapestry notes that “To our knowledge, no such adaptive net demand modelling approach 

has been implemented by a Grid Operator”, thus emphasising the innovative nature of this 

module as a whole. 

With the net demand module description presented by Google X sitting at a very high level, 

several considerations are highlighted below when detailing this area. 

6.1 Discussion Point: Should modelling of net demand be split as 

indicated into actual demand and embedded DER modules? 

As described above, Tapestry’s report explicitly splits net demand modelling into two 

constituent modules. These modules model actual demand and, separately, impact of 

embedded DERs, with a view of combining these in a simple calculation to obtain net 

demand at the given level of granularity. Net demand is the important measure for ESO, 

with the underlying modelling of actual demand and embedded DERs seemingly just a 

means to an end (trying to improve the accuracy of net demand forecasts by modelling the 

nuances of the fast-moving embedded DER market, rather than treating it as an “opaque 

box”). 

Given smart meter data reflects net demand directly and this could theoretically be used to 

extrapolate to a given geographical granularity, questions arising include: 

At what level should net demand be modelled? Is it worth splitting into actual demand and 

embedded DER modules? Does this greatly impact net demand forecast accuracy? Instead, 

is it sufficient to directly model net demand? Is there an additional benefit to understanding 

presence and utilisation of embedded DERs (over and above the modelling of net demand)? 

The answers to these questions dictate the overall approach to be taken in this area. The 

“clear” modelling (splitting into individually modelled components) would require a good 

understanding of the internal system structure and dynamics, whereas the “opaque” net 

modelling approach would have a greater reliance on large volumes of good quality training 

data.  

Whilst the separated actual demand and embedded DER components (as defined by 

Tapestry) are explored below, a single net demand model may be preferrable in reality. 
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6.2 Discussion Point: With whom should the responsibility of providing 

accurate demand forecasts sit? 

As seen with other modelling areas, there often arises a question as to whether ESO should 

hold the responsibility of creating accurate forecast data. In the case of demand modelling, 

should this capability instead sit with other parties such as suppliers or aggregators? The 

roadmap deliverable addresses this point by incorporating an analysis of the incentive, 

impact, value, and feasibility of other parties owning this element. 

6.3 Adaptive Demand Forecast and Consumer Behaviour Model 

6.3.1 Overview 

As noted above, the overarching purpose of the demand module is to “create forecasts, 

probabilistic trajectories, and scenarios for Net Demand at a substation, regional and total 

market level”. Specifically for the Adaptive Demand Forecast and Consumer Behaviour 

model element, the goal is to forecast actual demand40 under a given set of conditions. 

Analogous to other model groups, this translates to an output of: 

• Probabilistic scenario testing capability to forecast the likely actual demand under 

given conditions. 

When viewed through a holistic architectural lens, the scenario-based approach provides 

consistency across the model types and enables coherent testing of output sensitivity to 

conditions (see Architecture deliverable). 

The demand forecast and consumer behaviour model sections below aim to outline some 

of the current and planned demand forecast capabilities, detail the final vision (highlighting 

any decision points for consideration), and discuss some comparative gaps. [Note: The 

main As-Is analysis and gap analysis sit within a different deliverable but relevant data 

points are discussed here.] 

6.3.2 Existing and Planned Capabilities 

[See As-Is deliverable for full overview.] 

Whilst there is no current capability to forecast demand at the consumer level, there are 

several existing tools used to look at the GSP level of spatial granularity. Below is an 

overview of some relevant elements but, as noted above, the true As-Is analysis sits 

separately to this report, and as such the below is far from exhaustive. 

The ESO control room utilises three tools to forecast demand: 

• Platform for Energy Forecasting (PEF), 

• Real-Time Predictor (also referred to as “Demand Predictor”), 

• AMIRA. 

 
40 Actual Demand = Net Demand – Embedded DER Activity 
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Further, as detailed below, there is an ongoing innovation project known as “CrowdFlex” 

which would provide a half-hourly unit-level forecast of demand. 

6.3.2.1 EFS / PEF Demand Capability 

The Energy Forecasting System (EFS), gradually being replaced in functionality by the 

Platform for Energy Forecasting (PEF), covers multiple areas. 

At a high level, PEF focuses on four core products (not all relating to demand): 

1. National demand forecast, 

2. Wind power generation forecast, 

3. Solar power (Photovoltaic; PV) generation forecast, 

4. Grid supply point (GSP) forecast for demand, solar, and wind. 

Specifically for demand, we have two key outputs: 

• National Demand = the sum of generation leaving the transmission system, 

including metered and embedded generation 

• GSP Net Demand = net Super Grid Transform (SGT) load that is balanced at all 

points in time. 

Both National Demand and GSP Net Demand are forecast using deterministic models, with 

the PEF roadmap planning a shift towards probabilistic modelling. 

6.3.2.2 Real-Time Predictor 

Real-Time Predictor is used to “fix” the forecast data produced by other tools, providing a 

more granular minute-by-minute forecasting solution. This is achieved by taking real-time 

data inputs from iEMS (shifting to NCMS), the forecast output from PEF, and the profile of 

the closest matching historic day (as judged by the OEM). Bending of the historic curve to 

match cardinal points, Real-Time Predictor uses a regression algorithm to predict minute-

by-minute demand. 

6.3.2.3 AMIRA 

As mentioned in previous sections of this report, AMIRA is a third-party tool used by the 

control room to forecast demand and the associated error probability. The outputs of this 

tool do not feed directly into any other systems in the control room, with certain elements 

typed across manually by the OEM. 

6.3.2.4 CrowdFlex 

Domestic flexibility is, by definition, stochastic due to its reliance on human behaviour. The 

CrowdFlex project aims to understand and utilise this fact to demonstrate how domestic 

flexibility can be a “reliable energy and grid management resource” at scale.    
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The CrowdFlex: Alpha Model Specification document41 outlines in detail the requirement for 

two distinct model types in trying to better understand the probabilistic nature of domestic 

demand. The following are proposed: 

• Deterministic (simple linear regression) household-level Baseline Demand Model 

• Probabilistic (simple quantile linear regression) aggregated GSP-level Flexibility 

Forecast Model 

Whilst the exact model ownership structure is yet to be agreed (see figure below), creation 

of these models will provide ESO with a detailed view of forecasted demand, incorporating 

the additional complexity of flexibility events. 

Figure 30: Model Ownership Options - D8.2 Model Specification and Delivery Plan 

Baseline Demand Model 

The underlying Baseline Demand Model is a household (unit)-level forecast of half-hourly 

electricity consumption. This model has 2 core use cases: 

1. To provide ESO (as well as Flexibility Service Providers (FSPs) and potentially DSOs) 

with a clear view of forecasted domestic demand over a given period. 

[Note: the project scope is currently limited to forecasting those assets participating 

in the flexibility service, but the approach could be extended to all devices providing 

data feeds (“smart meter” MPANs and asset-level meters), and all domestic 

demand could therefore potentially be extrapolated.] 

2. To help with settlement through consistent baselining approaches – both ESO / DSO 

to FSPs (at portfolio level relative to the baseline) and FSPs to consumers (at unit 

level relative to the baseline). 

 
41 D8.2 – Model Specification and Delivery Plan, January 2023 



Page | 116  

 

The model of choice for calculating the forecasted baseline demand is a simple linear 

regression. [Note: the rationale behind this choice is clearly outlined in the CrowdFlex: 

Alpha Model Specification document and as such is omitted here.] This model is described 

as “deterministic”, meaning that it will produce a “single value” output (e.g., a single 

demand prediction for each half-hour interval) whilst also always producing the same 

output for a given set of inputs.  

The required data inputs for this regression are specified as: 

• “Lagged consumption features (from previous days, and weeks, up to 1 month ago)” 

• “Forecasted weather features”, 

excluding previous flexibility event days so that the baseline is not skewed.  

The output of this model, which will crucially be used as an input in the probabilistic 

flexibility model, will take the form of a half-hourly unit-level forecast of electricity 

consumption. Deterministic outputs such as this can then be readily aggregated to the 

desired level. 

The frequency of model output update is suggested to vary depending on the nature of the 

consumption data. For energy suppliers, daily updates would be expected in line with 

receipt of updated smart meter data, whilst asset operators may be able to update more 

frequently due to the near real-time data stream from EVs or heat pumps. 

Flexibility Model 

The Flexibility Model takes the output of the FSP’s Baseline Demand Models, aggregates 

them, and calculates the potential half-hourly domestic flexibility outturn of the specified 

set of assets (at GSP Group-level is proposed) in response to a particular flexibility event. 

The core purpose of this model is: 

1. To enable users to evaluate the viability of using a proposed flexibility event as a 

lever to balance the grid (on both planning / scheduling and near real-time 

timescales). 

The proposed model type for calculating this probabilistic flexibility outturn is a simple 

quantile linear regression model. [Note: Again, the rationale behind this choice is detailed in 

the CrowdFlex: Alpha Model Specification document.] In contrast to the above demand 

model, this model is described as “probabilistic”. In practice, this means that the model 

incorporates randomness to produce a distribution of outputs. 

The required data inputs are specified as: 

• “Baseline demand forecast” aggregated to desired level (GSP Group is proposed) 

• “Specification of the flexibility event intended to be run” (e.g., notice period, 

incentive level, duration, start time, event type, location, calendar variables etc.) 

• “Weather inputs” (with acknowledgement that weather impacts the baseline input, 

but proposing experimentation to observe how it further impacts uptake of flexibility 

events) 
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In the use case envisaged in the design document, the model will return a probability 

distribution in the form of percentiles for the “updated demand distribution” at half-hourly 

intervals (accounting for the flexibility event). 

Initial Observations 

• Training of the Baseline Demand Model will require historic weather and 

consumption data for each unit (with weather data likely disaggregated to the 

required half-hourly frequency). 

• The required quantity of this historic training data, whilst arguably subjective, should 

realistically cover at least 1 year (preferably more). 

• For the Flexibility Model, training data will need to cover a sufficiently wide area of 

the flexibility event parameter space (notice period, incentive level, duration, start 

time, event type, etc.) as well as the corresponding event responses. 

• The potentially variable level of aggregation performed could enable this demand 

modelling to feed into multiple other areas. 

• If the population of households / assets within the CrowdFlex trial pool is not 

representative of the wider population, more work may be required before this type 

of model can be scaled. The study is designed and scaled to provide this 

representative sample, but this is a key project risk. 

6.3.3 Required Final Capability 

The required final capability discussed below interprets the description provided in Google 

X Tapestry’s Advanced Dispatch Optimizer System Roadmap Report, providing a much 

greater level of detail, and highlighting arising decision points / considerations. 

This adaptive demand forecast and consumer behaviour component aims to evaluate 

demand forecast performance – comparing actual demand42 to historic forecasts to 

understand the impact of certain scenario conditions. 

From this analysis, forecasts can be improved and run through a scenario testing capability. 

In other words, the model aims to answer the question: 

Given a set of fixed inputs (e.g., day of week, time of day etc.), combined with forecast input 

data such as weather, market prices etc., and the existing demand forecast, what is the 

predicted actual demand at the chosen level of granularity? 

The below figure provides an initial high-level view of the required (supervised) model 

creation and scenario testing process.

 
42 Actual Demand = Net Demand – Embedded DER Activity 
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6.3.3.1 Overview 

 

Figure 31: Demand Forecast and Consumer Behaviour Model – Overall High-Level Process Flo
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For a brief description of these process stages, as previously, see section 5.1.3.1. 

The model in question uses supervised learning techniques to predict the actual demand at 

the chosen level of granularity under a given set of scenario conditions. 

Considerations around the form of the model output, as well as the final output from 

potentially running multiple scenario tests to account for uncertainty in the forecasted input 

variables, are discussed at length in sections “Modelling Approach Considerations” and 

“Scenario Testing Capability and Output”. These sections explore the possibilities of 

probabilistic base models (as opposed to point estimates) and probabilistic outputs from 

scenario testing43. 

6.3.3.2 Data Requirements Overview 

Within the process flow shown, data requirements can broadly be split into two categories: 

Historic Training Data and Scenario Input Data. Potential data sources are discussed in the 

data availability section. 

Historic Training Data 

Training data refers to the set of historical (labelled) data that will be used to train the first 

iteration of the model. Said training data will later be updated over time in line with a 

defined re-training schedule. 

The training data for these models consists of, for each desired level of granularity, 

Historical Forecast Data (i.e., What has happened previously with regards expected vs. 

actual demand?) and Additional Information for correlation tests (i.e., What external factors 

may account for any discrepancy observed in expected vs. actual demand?).  

Table 33: Demand Forecast and Consumer Behaviour Model – Training Data 

Category Data Description Frequency Total Time 
H

isto
ric 

F
o

re
ca

st D
a

ta
 

Demand 

Forecasts 

Historic demand forecasts 

across a variety of leading 

timeframes. 

Half-hourly (for 

each dispatch 

interval) 

At least 1 

year 

(Tapestry 

minimum), 

preferably 

approx. 3 

years (IBM 

view). 

Actual 

Demand 

Measured actual demand 

figures. 

Half-hourly (for 

each dispatch 

interval) 

A
d

d
itio

n
a

l 

In
fo

rm
a

tio
n

 

Demand 

Flexibility 

Service 

instructions 

Flexibility service 

instructions – accounting for 

the reduction in actual 

demand exhibited by those 

instructed. 

Half-hourly (for 

each dispatch 

interval) 

Weather 

Weather data for each 

relevant location at required 

lowest granularity level 

Half-hourly 

profiles 

 
43 As noted previously, when viewed through a holistic architectural lens, the scenario-based 

approach provides consistency across the model types and enables coherent testing of output 

sensitivity to conditions (see Architecture deliverable). 
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(temperature, precipitation, 

UV levels, wind speed etc.). 

Market 

Prices 

Associated market prices for 

the half-hourly intervals. 

Half-hourly (for 

each dispatch 

interval) 

F
ix

e
d

 In
p

u
t V

a
lu

e
s 

Day / Season 

Date of historic data – 

accounting for elements 

such as demand seasonality, 

weekday vs. weekend 

behaviour change etc. 

Fixed value for 

given actual 

demand 

Time of Day 
Time of historic data – 

accounting for daily patterns. 

Fixed value for 

given actual 

demand 

 

As previously, there is a balance to be struck between model accuracy and data gathering 

complexity. It is important to remember that further re-training will be continuous as more 

data is collected, thus improving the accuracy of the model. 

Scenario Input Data 

Scenario Input Data here refers to the set of information fed into the trained model to 

produce the probabilistic output desired. What the model requires as input is a set of 

forecasted data covering all the previously defined “Additional Information” variables 

(forecasted for the given timeframe in question), as well as the existing demand forecast 

and associated fixed scenario values to be tested. 

In other words, for the given future time in question, the model input data consists of 

Forecast Demand Data (i.e., What forecast are we looking to understand the likely 

performance of?), Fixed Scenario Values (i.e., What type of scenario is being evaluated?) 

and Forecasted Additional Information (i.e., How do we expect the factors affecting 

demand forecast performance to be behaving over the time in question?). 

Table 34: Demand Forecast and Consumer Behaviour Model – Scenario Input Data 

Category Data Description Time 

F
o

re
ca

ste
d

 

D
e

m
a

n
d

 

D
a

ta
 

Demand 

Forecasts 

Forward looking demand forecast for time period 

in question. 

Given 

future 

time 

period in 

question. 

F
o

re
ca

ste
d

 

A
d

d
itio

n
a

l 

In
fo

rm
a

tio
n

 

Demand 

Flexibility 

Service 

instructions 

Forecast of flexibility service instructions – 

accounting for the reduction in actual demand 

exhibited by those instructed. 

Weather 

Weather forecast data for each relevant location 

at required lowest granularity level (temperature, 

precipitation, UV levels, wind speed etc.). 
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Market 

Prices 

Forecast market prices for time period in 

question. 

F
ix

e
d

 

S
ce

n
a

rio
 

V
a

lu
e

s 

Day / Season 

Date of scenario – accounting for elements such 

as demand seasonality, weekday vs. weekend 

behaviour change etc. 

Time of Day Time of scenario – accounting for daily patterns. 

 

6.3.3.3 Data Models 

The below logical entity-relationship diagrams provide a view of how both the scenario 

input data sources, and separately the training data sources, could relate and be 

structured.44 

 

Figure 32: Demand Forecast and Consumer Behaviour Model – Example view of data model for scenario input 
data sources 

This model exemplifies the relationships between the different data sources and provides a 

practical view as to one way the end vision data structures could be realised.  

As an example, the forecasted demand profile to test within the performance evaluation 

model is linked via a key to the specific location (based on level of granularity – e.g., 

substation, regional etc.) and time interval being trialled. Shown by the connection types in 

the above diagram, each forecasted profile will join to precisely one Location / Time Interval 

combination key, whilst each such key may link to multiple demand forecasts. The Time 

 
44 See section 7 for overview of entity-relationship notation. 
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Interval can then be further used to gather information such as forecasted market prices 

etc. 

Similarly for the listed historic training data: 

 

Figure 33: Demand Forecast and Consumer Behaviour Model – Example view of data model for training data 
sources 

6.3.3.4 Modelling Approach Considerations 

Due to the similar problem structure and model type, the considerations outlined in the 

Generation Models section (Regression vs. Classification and Deterministic vs. Probabilistic) 

are also valid here. To avoid repetition, please refer to section 5.1.3.4 for definition and 

discussion of these points. 

Considerations for Demand Forecast and Consumer Behaviour Input Data Models 

An equivalent algorithm matrix to that produced for Generation Models is shown below. 
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Figure 34: Demand Forecast and Consumer Behaviour Model – Matrix of modelling techniques 

Additionally: 

Impact of COVID19 Pandemic on Training Data 

An important consideration, particularly for demand modelling, is the impact that the 

COVID19 pandemic had on consumer behaviour and, consequently, historic training data. 

The implementation of nationwide lockdowns to stem the spread of the virus greatly 

altered consumer daily demand profiles (with a sudden shift to increased working from 

home etc.). As a result, much of the recent historic demand data that would be used for 

model training purposes reflects this specific, isolated period of time which is no longer 

representative of customer behaviour. 

Further, one must consider how current demand differs from pre-COVID19 profiles. For 

example, anecdotally, more individuals are making use of flexible working and work-from-

home options. It could therefore be argued that longer-term changes to behaviour following 

the pandemic have resulted in a new landscape that is not accurately reflected by any 

previous data (pre or during pandemic). The nature of an adaptive model would hopefully 

quickly understand any discrepancy through continuous learning.45 

6.3.3.5 Scenario Testing Capability and Output 

As with the modelling approach, the considerations arising around running of the scenario 

testing capability (deterministic single run vs. deterministic multi-run vs. probabilistic single 

run etc.) are identical to those discussed in section 5.1.3.5. These are therefore not 

repeated in full here. 

However, equivalent views of sample parameter spaces and distribution output from a 

deterministic multi-run approach are shown below. 

  

 
45 This is particularly relevant in the context of a rapidly changing global environment, with increased 

weather event frequency and severity, potential future pandemics etc. 
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Table 35: Demand Forecast and Consumer Behaviour Model – Example parameter space for scenario testing 

Category Data Type Parameter 
e.g., Discrete 

Range 
e.g., Distribution 

F
o

re
ca

ste
d

 A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 

Demand 

Flexibility 

Service 

instructions 

Forecasted flexibility 

service instructions 

– e.g., taking the 

form of a (start time, 

end time, location, 

instruction) set of 

values 

N/A N/A 

Weather 

Temperature (°C) [16, 17, …]  𝑇 ~ Ν(18,4) 

Wind speed (mph) [10, 12, …]  𝑣 ~ Γ(15,1) 

UV Index [3, 4, …] 𝜗 ~ Γ(7.5,1) 

Etc.   

Market 

Prices 

Forecasted energy 

cost profile – likely 

taking the form of a 

series of (time, 

£/MWh value) pairs 

For the given time 

unit, 

 

[1.00, 1.15, …] 

For the given time 

unit, 

 
𝜗 ~ Γ(2,1) 

Etc.   

Etc.   
 

 

[Note: example discrete ranges and distributions are purely illustrative.] 

 

Figure 35: Demand Forecast and Consumer Behaviour Model – Example distribution output from running 
multiple trials with a deterministic model 
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6.3.4 Data Gap Analysis 

As is to be expected when defining a new, innovative capability, none of the existing or 

planned processes completely meet the requirements outlined in “Required Final 

Capability”. However, mapping said requirements to existing data sources and techniques 

provides a clearer view of missing elements, as well as next steps. 

As noted previously, the true gap analysis deliverable sits separately to this report, and the 

below section therefore comments only on data availability and quality. 

6.3.4.1 Overview 

Demand is currently commonly defined as simply the sum of generation, with approximate 

constant frequency ensuring that generation and demand match. Feedback suggests that 

demand is therefore not technically forecasted in the way suggested here (independently of 

generation). 

6.3.4.2 Availability of Data 

The below tables provide an overview of the currently understood data availability gap. 

We were unfortunately unable to obtain ESO SME input in this area within the required 

timeframe. As a result, the below sections are incomplete. 

Historic Training Data 

Table 36: Demand Forecast and Consumer Behaviour Model – Training Data Availability 

Category Data Frequency Total Time 
Currently Understood 

Availability 
H

isto
ric 

F
o

re
ca

st D
a

ta
 

Demand 

Forecasts 

Half-hourly (for 

each dispatch 

interval) 

At least 1 

year 

(Tapestry 

minimum), 

preferably 

approx. 3 

years 

(IBM 

view). 

[Awaiting SME input.] 

Actual Demand 

Half-hourly (for 

each dispatch 

interval) 

[Awaiting SME input.] 

A
d

d
itio

n
a

l In
fo

rm
a

tio
n

 

Demand 

Flexibility Service 

instructions 

Half-hourly (for 

each dispatch 

interval) 

[Awaiting SME input.] 

Weather 
Half-hourly 

profiles 

Some wind related data 

available (wind speed 

vs. wind power), stored 

in NED – unsure of 

exact storage length. 

Alternatively available 

through MET Office 

Weather Data for 

Business (wind, 
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temperature, radiation 

levels etc.). 

Market Prices46 

Half-hourly (for 

each dispatch 

interval) 

[Awaiting SME input.] 

F
ix

e
d

 In
p

u
t 

V
a

lu
e

s 

Day / Season 

Fixed value for 

given actual 

demand 

Fixed value – 

determined by other 

inputs. 

Time of Day 

Fixed value for 

given actual 

demand 

Fixed value – 

determined by other 

inputs. 

 

Scenario Input Data 

Table 37: Demand Forecast and Consumer Behaviour Model – Input Data Availability 

Category Data Time Currently Understood Availability 
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Demand Forecasts 

Given 

future time 

period in 

question. 

[Awaiting SME input.] 
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Demand Flexibility 

Service instructions 
[Awaiting SME input.] 

Weather 
Forecast data available and 

utilised. 

Market Prices47 [Awaiting SME input.] 

F
ixe

d
 

S
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a

rio
 

V
a
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e

s 

Day / Season 
Fixed value – determined by other 

inputs. 

Time of Day 
Fixed value – determined by other 

inputs. 

 

6.3.4.3 Data Quality / Granularity Analysis 

As before, data has not been able to be extracted for IBM-run data quality analysis, with 

comments instead reflecting the current understanding of relevant data quality and 

granularity. 

 
46 See regulatory consideration point. 
47 See regulatory consideration point. 
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As above, we were unfortunately unable to obtain ESO SME input in this area within the 

required timeframe. As a result, this section is incomplete. 

For weather-related data comments, see section 5.1.4.3. 

6.3.5 Regulatory Considerations, Explainable AI, and Process Impacts 

Again, there are various points for consideration around explain-ability, impact on existing 

processes etc. 

6.3.5.1 Dispatch Instructions 

As for all Input Data models, the previously discussed principles around the ability for 

humans to understand, analyse, and improve the underlying dispatch instruction logic apply 

here. In the case of actual demand modelling, arising questions for scrutiny may include: 

• In situations where the lowest price units are not utilised, what are the underlying 

reasons? Is there, for example, a particular area of high forecasted demand that is 

altering the optimum solution via geographical necessity? To what degree are small 

changes in demand altering the optimum solution (sensitivity / solution stability 

analysis)? 

6.3.5.2 Use of Market Prices 

In the document Virtual Energy System - Advanced Dispatch Optimiser Google X 

Comparison (April 2022), an ESO Operational Manager points out that, at the time of 

writing, 

“The current view from Energy Forecasting is that market price cannot be used in demand 

forecasting and would require a Grid Code modification to allow it to be used”. 

Having said this, it is further noted that historic demand profiles implicitly reflect market 

pricing information “as price avoidance behaviour is inherently included in the demand 

outturn”. The Data Science workstream outlined in the introductory section “Adaptive 

Model Considerations, Advised Incremental Approach, and Cone of Uncertainty” would 

help to establish the additional value gained from inclusion of explicit market prices, as 

opposed to implicit inclusion through demand profiles. Therefore, in detailing the full model 

specification, it could be decided whether it is worth the required Grid Code modification. 

6.3.6 Next Steps 

The separately delivered “Roadmap” output will specify next steps in working towards the 

more holistic longer-term end vision. 

However, as indicated above, there are a couple of immediate steps that can be taken to 

progress this area. These include: 

1. Establish whether net demand should be modelled outright, or whether it is of 

superior accuracy / usefulness to model actual demand and embedded DER 

contributions separately as described here (see 6.1). 
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2. Initial Data Science workstream activities (see 4.2.1). 
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6.4 Adaptive Embedded DER Models 

6.4.1 Overview 

The Adaptive Embedded Distributed Energy Resource (DER) Models described by Google X 

Tapestry in the output document Advanced Dispatch Optimizer System Roadmap Report 

aim to “estimate the amount and type of embedded DER at each transmission substation”. 

An underlying understanding of this and the associated impact on demand would enable, 

through combination with the expected actual demand model, the calculation of forecast 

net demand. 

As noted in the Introduction, embedded DERs are defined as follows: 

Embedded DER = Non-instructible resources without any operational metering visible to 

ESO. 

Distinguishing from the DER model above, embedded DERs are crucially not visible, and 

hence their impact is not measured or well understood at a granular level. 

To achieve the high-level purpose, one must understand the presence, use, and associated 

impact of embedded DERs. In other words: 

1. Where are embedded DERs installed? 

2. For each type of DER and customer profile class, how is the DER utilised / what is 

the impact on net demand? 

This model group is touched on only very briefly by Tapestry, with very little suggestion as 

to how this may be modelled, or even what data may be required. Therefore, the below 

explores some potential methods to answer the above questions, making reference to 

previously completed work where relevant. 

[Note: Regarding an As-Is analysis, there is no known detail around current, in-house, 

capabilities to forecast embedded DERs in isolation48. Therefore, such a section is omitted 

below.] 

6.4.2 Distribution System Operator (DSO) Ownership 

An important consideration to raise early here, before discussing the above outlined 

questions, is the potential role of the DSOs. Whilst this is also discussed as part of the DER 

models, the lack of metering here arguably places even more emphasis on the DSO.49 

Given the positioning of these embedded resources in the market infrastructure, it is likely 

that any activities in this space should be led by the relevant DSO. As before, this would 

have some implications regarding Explainable AI etc. 

The Tapestry report notes, “the model can be enhanced by working with distribution 

companies, distributed DER aggregators and other innovation companies to enhance 

models through access to information”. Whilst Tapestry’s description of distribution 

 
48 Anecdotally, PEF forecasts embedded solar, whilst EFS forecasts embedded wind. 
49 A potential area to explore is the DER visibility innovation project. 
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company involvement appears to be optional, they are undoubtedly critical to this 

capability. Indeed, it should be noted that the core projects referenced below were carried 

out with a DNO, and therefore defined at distribution level. 

6.4.3 Where are embedded DERs installed? 

This initial question is far from trivial given the suspected prevalence of unregistered Low 

Carbon Technology (LCT) devices across the network. The first consideration is at what 

geographical level these devices should be considered. For example, is it most effective to 

understand these devices at a MPAN-level and then aggregate as necessary, or is it 

sufficient to approximate by larger area? 

One award-winning50 piece of work which considered precisely this headline question of 

resource location was the LCT Detection project. 

6.4.3.1 Case Study: LCT Detection Project 

In late 2018, IBM Consulting’s AI & Analytics practice undertook the NIA-funded LCT 

Detection project51 in collaboration with Western Power Distribution and Electralink. Highly 

relevant to this question of DER location, the purpose read: 

“By using Electralink’s DTS [Data Transfer Service] dataset, combining this with a range of 

other structured and unstructured data and then applying IBM’s Cognitive analytics, the 

objective is to identify patterns in the data that indicate the presence of EV, PV or other 

LCTs that had not previously been identified.” 

This proof-of-concept project established a method by which previously unknown LCT 

devices could be detected at a household level, using both structured and unstructured 

data. A series of different Machine Learning models were developed within an IBM Watson 

Data Studio environment, and a pathway was presented to support further development 

and adoption into BAU. For more detail, please view the thorough closedown report52. 

If considering household-level analysis of DER presence, this project provides an innovative 

method from which to start. 

 
50 “Data Project of the Year”, Network Awards 2020 
51 https://www.nationalgrid.co.uk/innovation/projects/lct-detection 
52 https://www.nationalgrid.co.uk/downloads-view-reciteme/47647 
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Figure 36: Plots of a random selection of MPANs which the model predicts as having PV installed 

6.4.4 For each type of DER and customer profile class, how is the DER utilised / 

what is the impact on net demand? 

Again, this question is far from trivial due to the required segmentation of customers and 

variability of DER usage. Assuming presence of a DER is known at a given granularity (e.g., 

household level), useful analysis would require knowledge of how this alters demand. This 

may be dependent on DER device specifics, tariff type, customer behaviour, location 

specific information, property type etc. 

The exploration of demand variability and the clustering of customers based upon demand 

behaviour was a central theme of the VM-Data project. 

[Note: the VM-Data project focused on net demand. As a result, although a similar 

methodology could be used to back calculate the impact of DERs by customer segments, it 

could also be used to look at net demand directly (see discussion in 6.1).] 

6.4.4.1 Case Study: Virtual Monitoring Data (VM-Data) Project 

Another relevant project of note is the NIA-funded Virtual Monitoring Data (VM-Data) 

project53, again delivered by IBM Consulting’s AI & Analytics practice in collaboration with 

Western Power Distribution and Electralink. Whilst this project was paused due in part to 

the outbreak of the COVID19 pandemic, the objectives were: 

“Validation and enhancement of the model developed in last year’s LCT Detection NIA 

project; and  

Development of a set of domestic half hourly consumption profiles which can be 

aggregated and used for virtual network monitoring at feeder level, as well as enabling 

enhanced network planning and demand prediction.” 

 
53 https://www.nationalgrid.co.uk/innovation/projects/virtual-monitoring-data-vm-data 
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Such a set of domestic half-hourly consumption profiles would be dependent on customer 

variables, such as house type, location, presence of LCT devices, occupation, etc., as well 

as more general seasonal variables, including day of the week and month. These 

consumption profiles provide a more granular understanding of how usage varies by 

customer (compared to the high-level Elexon profiles), and aggregation would allow better 

planning of the Low Voltage (LV) network. 

 

Figure 37: Normalised Consumption profiles showing three clusters for each day at given substation, VM-Data 
Six Monthly Progress Report 

6.4.5 Next Steps 

The separately delivered “Roadmap” output will specify next steps in working towards the 

more holistic longer-term end vision. 

However, there are a couple of immediate steps that can be taken to progress this area. 

These include: 

1. Establish whether net demand should be modelled outright, or whether it is of 

superior accuracy / usefulness to model actual demand and embedded DER 

contributions separately as described here (see 6.1). 

2. Explore potential methodologies for this area, such as those outlined within the 

innovation projects above. 

3. Initial Data Science workstream activities (see 4.2.1). 
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7 Appendix: Entity-Relationship Diagrams Overview 

Logical entity-relationship diagrams are used above to provide a view of potential data 

input relations and structures. Originally developed in the 1970s, such diagrams are often 

used in the design and debugging of relational databases as they clearly depict the 

interconnectedness of different “entities”. 

To fully appreciate these diagrams, one must understand the use of different connection 

types when representing relationships. The below key provides an overview of such 

connections. 

 

Figure 38: Entity-Relationship Diagram Connection Type Key 

There are several different notation convention techniques for this style of diagram. The 

technique utilised above is one of the most widely used, often referred to as Crow’s Foot 

notation. 
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8 Appendix: CIM Representations and Alignment to IBM Data 

Model for Energy and Utilities 

For consistency, completeness, and ease of implementation, one may want to consider the 

alignment of the above entity-relationship data models to existing standards and 

blueprints. 

The IBM Data Model for Energy and Utilities (DMEU)54 enables quick development of 

business applications through the provision of industry-specific data warehouse design 

models, business terminology and analytics. With regards mapping to the Common 

Information Model (CIM), DMEU is aligned to CIM standards 61968 and 6197055. The third 

IEC (International Electrotechnical Commission) standard, CIM 62325, is the Markets 

specific leg and therefore may additionally be of use for ESO. 

Giving a basic DMEU mapping example for weather and generator information shows the 

potential value of such a tool. 

 

Figure 39: Basic mapping of weather variables to DMEU 

 
54 https://www.ibm.com/products/data-model-for-energy-and-utilities 
55 More specifically, DMEU is aligned / influenced by CIM 61970-301 and 61968. The Common Grid 

Model Exchange Standard (CGMES) Library is primarily based on 61970, and as such there is 

additionally some alignment between DMEU and CGMES. 
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Figure 40: Basic mapping of generator variables to DMEU 

[Note: Instances of Generator here could be held as Providers – Providers can also have 

relationships to Agreements, which could be used to hold any agreements in place between 

ESO and the generators.] 
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9 Appendix: Glossary of Acronyms 

Table 38: Acronym Definitions 

Term Definition 

AI Artificial Intelligence 

API Application Programming Interface 

BAU Business As Usual 

BDO Bulk Dispatch Optimiser 

BM Balancing Mechanism 

BMU Balancing Mechanism Unit 

BOA Bid Offer Acceptance 

BOD Bid Offer Data 

BTM Behind-the-meter 

CCL Capped Committed Level 

CGMES Common Grid Model Exchange Standard  

CIM Common Information Model 

CNI Critical National Infrastructure 

DER Distributed Energy Resource 

DH Data Historian 

DMEU Data Model for Energy and Utilities 

DNO Distribution Network Operator 

DSO Distribution System Operator 

DTS Data Transfer Service 

EFS Energy Forecasting System 

ESO Electricity System Operator 

FFRIC Firm Frequency Response & Inertia Calculator 

FPN Final Physical Notification 

FSP Flexibility Service Provider 

FX Forecast power 

GSP Grid Supply Point 
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HVDC High Voltage Direct Current 

IEC International Electrotechnical Commission 

iEMS integrated Energy Management System 

LCT Low Carbon Technology 

LDA Legacy Dispatch Advisor 

LP Linear Programming 

LV Low Voltage 

MAE Mean Absolute Error 

MDA Modern Dispatch Advisor 

MetOffice Meteorological Office 

MILP Mixed Integer Linear Programming 

ML Machine Learning 

MO Metered Output 

MPAN Meter Point Administration Number 

MSE Mean Squared Error 

MW Megawatt 

NCMS Network Control Management System 

NED National Grid Economic Database 

NETA New Electricity Trading Arrangements 

NG National Grid 

NIA Network Innovation Allowance 

OBP Open Balancing Platform 

OEM Operational Energy Manager 

OFTO Offshore Transmission Operators 

OLTA Offline Transmission Analysis 

OSA Online Stability Analysis 

PA Power Available 

PEF Platform for Energy Forecasting 

PN Physical Notification 

PNA Power Network Analysis 
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PV Photovoltaic 

RMSE Root Mean Square Error 

RoCoF Rate of Change of Frequency 

SCADA Supervisory Control and Data Acquisition 

SGT Super Grid Transform 

SME Subject Matter Expert 

SQSS Security and Quality of Supply Standard 

TO Transmission Operator 

TSO Transmission System operator 

UV Ultraviolet 

VES Virtual Energy System 

VM Virtual Monitoring 

WiMP Wind Metered Power 

XAI Explainable Artificial Intelligence 

 


