

Balancing Programme Product Development Beyond 2025

Background:

As part of the November 2024 Balancing Programme Event, we hosted an interactive breakout session exploring potential balancing & forecasting capabilities beyond 2025.

The session was aimed at ensuring the programme's roadmap aligns with customer expectations and priorities, whilst enabling a decarbonised energy system and delivering consumer value. The opportunity to feed into this was extended to 13 Dec for those unable to attend in person. Thank you to everyone who participated.

Survey Recap:

- **The capabilities** were divided into three areas: Enhanced Dispatch, Whole System and Flexibility, and Data and Transparency.
- **Scoring was based upon** the significance to business; delivery challenges and understanding of capability. Additional opportunities for comments were included.
- Timeline: The diagram below outlines the provisional delivery timeline for development of the Balancing Programme product roadmap for 2026 – 2031, and future engagement opportunities as part of this; please note that timelines for the next Price Control Submission are yet to be confirmed.

2

Capability Descriptions

* Ideas suggested by Industry participants at June Balancing Programme event.

** To view NESO's Strategic Priorities please click here.

Area	Capabilities	Brief Description	Outcomes	Aligns with NESO Strategic Priorities**:
Enhanced Dispatch	Co- optimisation (Energy, System, and Ancillary Services)	Involves the simultaneous optimisation of multiple interdependent services or resources within the energy system. This approach aims to maximise overall efficiency and minimise costs by considering the dependencies and interactions between different services, such as energy, system stability, and ancillary services.	More efficient dispatch, Lower balancing costs, Improved system reliability.	Consumer Value, Digital Mindset
	Non-integer Bid Offer Acceptances (BOAs)*	Refers to the ability to accept bid and/or offer volumes in non-integer increments. This approach allows for more precise and flexible management of electricity generation and demand, reducing imbalances and improving overall system efficiency.	More precise dispatch, Reduced imbalances, Enhanced system efficiency.	Consumer Value, Digital Mindset, Clean Power
	Increased Number of Bid Offer Pairs*	Involves allowing market participants to submit more than the current 5 bid and offer pairs for each settlement period. This approach enhances market liquidity, provides more flexibility for participants, and improves the overall efficiency of the market. Note: This would require a Balancing and Settlement code change.	Enhanced market liquidity, Increased flexibility, Improved market efficiency.	Consumer Value, Clean Power
	Aggregated Dispatch for Sub-1MW Resources*	Refers to the aggregation and dispatch of small-scale energy resources, each with a capacity of less than 1MW. By aggregating these resources, they can participate in energy markets and	Increased participation of small-scale resources, Enhanced grid flexibility,	Clean Power, Decarbonised Energy, Consumer Value

		provide grid services, enhancing	Better	
		flexibility and supporting the	integration of	
		integration of distributed energy	distributed	
		resources.	energy	
			resources.	
-	Decentralised	Refers to the process of managing	Enhanced grid	Clean Power,
	Dispatch	electricity generation and demand	resilience,	Decarbonised
		at a more localised level. Instead of	Reduced	Energy,
		relying solely on central control,	transmission	Consumer
		decentralised dispatch allows for	losses,	Value
		more flexible and responsive	Better	
		management of distributed energy	integration of	
		resources. This approach can	renewables.	
		enhance grid resilience, reduce		
		transmission losses, and support		
		the integration of renewable energy		
		sources.		
-	Al-Based	Leverage artificial	Improved	Digital Mindset,
	Decision	intelligence/machine learning to	decision-	Clean Power
	Support Tools	assist Control Engineers in making	making,	
		more informed decisions. These	Enhanced	
		tools can analyse vast amounts of	operational	
		, data, identify patterns, and provide	efficiency	
		recommendations, enhancing the	,	
		efficiency and effectiveness of arid		
		management.		
-	Including	Involves factoring in the carbon	Reduced	Decarbonised
	Carbon in	emissions associated with different	carbon	Energy,
	Balancing	generation/demand sources when	emissions,	Clean Power,
	Mechanism	making dispatch decisions. This	Support for	
	(вм)	approach aims to reduce the	low-carbon	
	Decisions*	overall carbon footprint of grid	transition,	
		operations, support the transition to	Alianment with	
		a low-carbon energy system, and	environmental	
		alian with broader environmental	aoals.	
		goals.	5	
Whole	Transmission	Involves the coordinated	Improved	Clean Power,
System and	System	management of electricity networks	whole system	Decarbonised
Flexibility	Operator (TSO)	at different voltages. This approach	efficiency,	Energy,
-	/ Distribution	aims to enhance the efficiency and	Enhanced	Consumer
	System	reliability of the entire energy	reliability,	Value
	, Operator (DSO)	system by optimising the	Improved	
	Coordination*	interactions between transmission	coordination	
		and distribution networks.		
	Integration of	Refers to the introduction and	Enhanced arid	Clean Power,
	New Asset	integration of new types of enerav	flexibility,	Decarbonised

.

.

•

.

•

.

•

•

3

4

1	types, the grid can become more flexible, resilient, and capable of supportina the transition to a low-	resilience, Support for	
1	flexible, resilient, and capable of supporting the transition to a low-	Support for	
5	supporting the transition to a low-		
		low-carbon	
	carbon energy system.	transition.	
Evolution of	Involves the development and	Enhanced grid	Clean Power,
Demand-Side	enhancement of markets that	stability,	Decarbonised
Flexibility	enable consumers to adjust their	Reduced	Energy,
Markets*	electricity usage in response to	consumer	Consumer
1	relevant signals. This approach	costs,	Value
	supports grid stability, reduces	Better	
	costs, and facilitates the integration	integration of	
	of renewable energy sources by	renewables.	
	leveraging the flexibility of demand-		
	side resources.		
Availability of 1	Refers to the capacity of consumers	System	Clean Power,
Demand-Side 1	to adjust their electricity usage in	, resilience,	Decarbonised
Flexibility	response to relevant signals. This	reduced costs,	Enerav,
1	flexibility can be leveraged to	enhanced	Consumer
	balance supply and demand,	svstem	Value
	reduce costs, and enhance arid	efficiency.	
	stability. By increasing the		
	availability of demand-side		
1	, flexibility, the grid can become		
	more resilient and efficient.		
Enhanced I	Involves improving collaboration	Optimised	Clean Power,
European	and coordination between	cross-border	Decarbonised
Coordination	European energy markets and	flows,	Energy,
	system operators. This approach	Improved	Consumer
	aims to optimise cross-border	system	Value.
	electricity flows, improve system	, reliability and	
	reliability and security.	, security.	
Zonal and Local	Focuses on demand movement	, Improved	Clean Power,
Demand	(levelling) within specific zones and	network	Decarbonised
Optimisation I	local areas. This involves using	efficiency.	Energy,
	advanced forecasting and real-		Consumer
1	time data to adjust demand		Value
	patterns and timinas. The goal is to		
	enhance the overall efficiency of the		
	electricity network.		
Constraint I	, Involves predicting potential	Reduced	Clean Power.
Forecastina*	constraints on the electricity arid.	congestion,	Decarbonised
	such as transmission bottlenecks.	improved	Energy,
-	These forecasts help system	system	Consumer
	operators plan and manaae the	plannina,	Value.
	system more effectively, reducing	enhanced	
	, , , , , , , , , , , , , , , , , , ,	reliability.	
Constraint	advanced forecasting and real- time data to adjust demand patterns and timings. The goal is to enhance the overall efficiency of the electricity network. Involves predicting potential	Reduced	Consumer Value Clean Power,

.

•

•

.

•

		the risk of constraints and ensuring		
		reliable electricity supply.		
Data and Transparency	Data Publication for Distributed Assets*	Involves making information about distributed energy resources (DERs) publicly available. This includes both static data (e.g., location and capacity) and dynamic data (e.g., real-time output). By publishing this data, stakeholders can better understand and integrate DERs into the grid, enhancing transparency and facilitating more efficient grid management.	Improved transparency, Better integration of DERs, Enhanced grid management.	Digital Mindset, Consumer Value, Clean Power.
	Data Exchange e.g., Industry Standard Application Program Interface (APIs)	Enables seamless communication between different IT systems and platforms. APIs allow for the real- time exchange of data between system operator, market participants, and other stakeholders.	Enhanced data sharing, Improved system coordination, Increased efficiency.	Digital Mindset, Consumer Value, Clean Power
	Network Model Exchange (Common Information Model - CIM)	Involves standardising the exchange of network data between different systems and stakeholders. CIM provides a common vocabulary and data structure, enabling seamless communication and integration of network models. This approach enhances interoperability, improves data quality, and supports more efficient grid management.	Improved interoperability, Enhanced data quality, More efficient grid management.	Digital Mindset, Consumer Value, Clean Power.
	Transparency of Non- Balancing Mechanism (Non-BM) Data*	Involves making information about non-BM energy resources publicly available. This includes data on their availability, performance, and participation in services. By enhancing transparency, stakeholders can better understand and integrate these resources into the grid, facilitating more efficient grid management.	Enhanced transparency, Better integration of non-BM resources, Improved grid management.	Digital Mindset, Consumer Value, Clean Power.
	Automated Reporting of Optimisation Decisions*	Involves using automated systems to generate and publish reports on optimisation decisions. This approach enhances transparency, improves accountability, and provides stakeholders with timely	Improved transparency, Enhanced accountability,	Digital Mindset, Consumer Value, Clean Power.
• •	• •	• •		5

¢

•

•

•

•

	-		
	and accurate information on	Enhanced	
	decisions.	decision-	
		making.	
Continuous	Involves enhancing efforts to	Enhanced	Digital Mindset,
Improvement in	monitor and evolve the efficiency of	dispatch	Consumer
Dispatch	dispatch processes. This includes	efficiency,	Value, Clean
Efficiency	implementing best practices,	Improved	Power.
Monitoring and	leveraging advanced analytics, and	transparency,	
Transparency	ensuring transparent reporting of	Enhanced	
	dispatch performance.	system	
		performance.	
Inertia	Involve predicting the inertia of the	Improved grid	Clean Power,
Forecasts*	electricity grid, which is a measure	stability,	Decarbonised
	of its ability to resist changes in	Enhanced	Energy,
	frequency. Accurate inertia	system	Consumer
	forecasts are essential for	reliability.	Value.
	maintaining grid stability.		

•

•

•

.