

Balancing Programme Product Development Beyond 2025

Context

As part of the November 2024 Balancing Programme Event, we hosted an interactive breakout session exploring potential balancing & forecasting capabilities beyond 2025. The session was aimed at ensuring the Programme's roadmap aligns with customer expectations, whilst enabling a decarbonised energy system and delivering consumer value.

During the event, participants were asked to complete three short surveys to gather their insights and feedback. For those who were unable to complete the surveys during the session or did not attend the event, we are offering an extended opportunity to provide your feedback. The survey will remain open until 16:00 on 13 December. Your participation will help us identify any gaps and understand your priorities.

We appreciate your time and input, and we look forward to your continued engagement in shaping the future of the Balancing Programme.

The Ask:

- **Read:** Please read/familiarise yourself with the descriptions of the capabilities outlined in the table below; the capabilities are divided into three areas: Enhanced Dispatch, Whole System and Flexibility, and Data and Transparency.
- **Scoring:** Score the capabilities for the respective areas using the Microsoft Forms surveys below; the scoring focuses on:
 - **Significance to Business**: How significant is the delivery of the capability to your business?
 - Delivery Challenges: How challenging would it be to deliver the capability for you?
 - Understanding of Capability: How well do you understand the capability?
 - Additional Comments: Any additional comments or suggestions regarding this capability?

- **Additional capabilities:** You can also suggest any additional capabilities missing from the list on the Microsoft Forms provided.
- Survey Links:
 - o Survey 1 Enhanced Dispatch
 - Survey 2 <u>Whole System & Flex</u>
 - Survey 3 <u>Data & Transparency</u>
- Scoring Explanation: To ensure we gather meaningful and actionable feedback, we are using a 1-7 scoring scale. Here's what each score represents:
 - **Not at all (1):** Not relevant or significant to the business, no challenges in delivery, no understanding of capability.
 - **Very Low (2):** Very little relevance or significance to the business, minimal challenges in delivery, very little understanding of capability.
 - **Low (3):** Low relevance or significance to the business, some minor challenges in delivery, limited understanding of capability.
 - **Moderate (4):** Moderately relevant or significant to the business, moderate challenges in delivery, basic understanding of capability.
 - **High (5):** Highly relevant or significant to the business, considerable challenges in delivery, good understanding of capability.
 - **Very High (6):** Very high relevance or significance to the business, substantial challenges in delivery, very good understanding of capability.
 - **Extremely High (7):** Extremely relevant or significant to the business, major challenges in delivery, excellent understanding of capability.

• **Timeline:** <u>The capabilities surveys close on the 13 December 2024</u>; the diagram below outlines the provisional delivery timeline for development of the Balancing Programme product roadmap for 2026 – 2030, and future engagement opportunities as part of this; please note that timelines for RIIO-3 Price Control Submission are yet to be confirmed.

 Questions: If you have any questions regarding the survey, please do not hesitate to get in contact with us at <u>box.balancingprogramme@nationalenergyso.com</u>

Capability Descriptions

- * Ideas suggested by Industry participants at June Balancing Programme event.
- ** To view NESO's Strategic Priorities please click here.

Area	Capabilities	Brief Description	Outcomes	Aligns with NESO Strategic Priorities**:
Enhanced	Co-	Involves the simultaneous	More efficient	Consumer
Dispatch	optimisation	optimisation of multiple	dispatch,	Value,
	(Energy,	interdependent services or	Lower	Digital Mindset
	System, and	resources within the energy system.	balancing	
	Ancillary	This approach aims to maximise	costs,	
	Services)	overall efficiency and minimise		

	costs by considering the	Improved	
	dependencies and interactions	system	
	between different services, such as	reliability.	
	energy, system stability, and		
	ancillary services.		
Non-integer Bid	Refers to the ability to accept bid	More precise	Consumer
Offer	and/or offer volumes in non-integer	dispatch,	Value, Digital
Acceptances	increments. This approach allows	Reduced	Mindset,
(BOAs)*	for more precise and flexible	imbalances,	Clean Power
	management of electricity	Enhanced	
	generation and demand, reducing	system	
	imbalances and improving overall	efficiency.	
	system efficiency.		
Increased	Involves allowing market	Enhanced	Consumer
Number of Bid	participants to submit more than	market	Value,
Offer Pairs*	the current 5 bid and offer pairs for	liquidity,	Clean Power
	each settlement period. This	Increased	
	approach enhances market	flexibility,	
	liquidity, provides more flexibility for	Improved	
	participants, and improves the	market	
	overall efficiency of the	efficiency.	
	market. Note: This would require a		
	Balancing and Settlement code		
	change.		
Aggregated	Refers to the aggregation and	Increased	Clean Power,
Dispatch for	dispatch of small-scale energy	participation of	Decarbonised
Sub-1MW	resources, each with a capacity of	small-scale	Energy,
Resources*	less than 1MW. By aggregating	resources,	Consumer
	these resources, they can	Enhanced grid	Value
	participate in energy markets and	flexibility,	
	provide grid services, enhancing	Better	
	flexibility and supporting the	integration of	
	integration of distributed energy	distributed	
	resources.	energy	
		resources.	
Decentralised	Refers to the process of managing	Enhanced grid	Clean Power,
Dispatch	electricity generation and demand	resilience,	Decarbonised
	at a more localised level. Instead of	Reduced	Energy,
	relying solely on central control,	transmission	Consumer
	decentralised dispatch allows for	losses,	Value
	more flexible and responsive	Better	
	management of distributed energy	integration of	
	resources. This approach can	renewables.	

.

•

•

.

•

.

	Al-Based Decision Support Tools	enhance grid resilience, reduce transmission losses, and support the integration of renewable energy sources. Leverage artificial intelligence/machine learning to assist Control Engineers in making more informed decisions. These tools can analyse vast amounts of data, identify patterns, and provide recommendations, enhancing the efficiency and effectiveness of grid management.	Improved decision- making, Enhanced operational efficiency	Digital Mindset, Clean Power
	Including Carbon in Balancing Mechanism (BM) Decisions*	Involves factoring in the carbon emissions associated with different generation/demand sources when making dispatch decisions. This approach aims to reduce the overall carbon footprint of grid operations, support the transition to a low-carbon energy system, and align with broader environmental goals.	Reduced carbon emissions, Support for low-carbon transition, Alignment with environmental goals.	Decarbonised Energy, Clean Power,
Whole System and Flexibility	Transmission System Operator (TSO) / Distribution System Operator (DSO) Coordination*	Involves the coordinated management of electricity networks at different voltages. This approach aims to enhance the efficiency and reliability of the entire energy system by optimising the interactions between transmission and distribution networks.	Improved whole system efficiency, Enhanced reliability, Improved coordination	Clean Power, Decarbonised Energy, Consumer Value
	Integration of New Asset Types	Refers to the introduction and integration of new types of energy resources and technologies into the grid. By incorporating new asset types, the grid can become more flexible, resilient, and capable of supporting the transition to a low- carbon energy system.	Ennanced grid flexibility, Improved resilience, Support for low-carbon transition.	Clean Power, Decarbonised Energy
	Evolution of Demand-Side Flexibility Markets*	Involves the development and enhancement of markets that enable consumers to adjust their electricity usage in response to	Enhanced grid stability,	Clean Power, Decarbonised Energy,

.

•

•

.

•

				_
		relevant signals. This approach	Reduced	Consumer
		supports grid stability, reduces	consumer	Value
		costs, and facilitates the integration	costs,	
		of renewable energy sources by	Better	
		leveraging the flexibility of demand-	integration of	
		side resources.	renewables.	
	Availability of	Refers to the capacity of consumers	System	Clean Power,
	Demand-Side	to adjust their electricity usage in	resilience,	Decarbonised
	Flexibility	response to relevant signals. This	reduced costs,	Energy,
		flexibility can be leveraged to	enhanced	Consumer
		balance supply and demand,	system	Value
		reduce costs, and enhance grid	efficiency.	
		stability. By increasing the		
		availability of demand-side		
		flexibility, the grid can become		
		more resilient and efficient.		
	Enhanced	Involves improving collaboration	Optimised	Clean Power,
	European	and coordination between	cross-border	Decarbonised
	Coordination	European energy markets and	flows,	Energy,
		system operators. This approach	Improved	Consumer
		aims to optimise cross-border	system	Value.
		electricity flows, improve system	reliability and	
		reliability and security.	security.	
	Zonal and Local	Focuses on demand movement	Improved	Clean Power,
	Demand	(levelling) within specific zones and	network	Decarbonised
	Optimisation	local areas. This involves using	efficiency.	Energy,
		advanced forecasting and real-		Consumer
		time data to adjust demand		Value
		patterns and timings. The goal is to		
		enhance the overall efficiency of the		
		electricity network.		
	Constraint	Involves predicting potential	Reduced	Clean Power,
	Forecasting*	constraints on the electricity grid,	congestion,	Decarbonised
		such as transmission bottlenecks.	improved	Energy,
		These forecasts help system	system	Consumer
		operators plan and manage the	planning,	Value.
		system more effectively, reducing	enhanced	
		the risk of constraints and ensuring	reliability.	
		reliable electricity supply.		
Data and	Data	Involves making information about	Improved	Digital Mindset,
Transparency	Publication for	distributed energy resources (DERs)	transparency,	Consumer
-	Distributed	publicly available. This includes		Value, Clean
	Assets*	both static data (e.g., location and		Power.

.

•

.

.

	capacity) and dynamic data (e.g.,	Better	
	real-time output). By publishing this	integration of	
	data, stakeholders can better	DERs,	
	understand and integrate DERs into	Enhanced grid	
	the grid, enhancing transparency	management.	
	and facilitating more efficient grid	-	
	management.		
Data Exchange	Enables seamless communication	Enhanced data	Digital Mindset,
e.g., Industry	between different IT systems and	sharing,	Consumer
Standard	platforms. APIs allow for the real-	Improved	Value, Clean
Application	time exchange of data between	system	Power
Program	system operator, market	coordination,	
Interface (APIs)	participants, and other	Increased	
	stakeholders.	efficiency.	
Network Model	Involves standardising the	Improved	Digital Mindset,
Exchange	exchange of network data between	interoperability,	Consumer
(Common	different systems and stakeholders.	Enhanced data	Value, Clean
Information	CIM provides a common	quality, More	Power.
Model - CIM)	vocabulary and data structure,	efficient grid	
	enabling seamless communication	management.	
	and integration of network models.		
	This approach enhances		
	interoperability, improves data		
	quality, and supports more efficient		
	grid management.		
Transparency	Involves making information about	Enhanced	Digital Mindset,
of Non-	non-BM energy resources publicly	transparency,	Consumer
Balancing	available. This includes data on	Better	Value, Clean
Mechanism	their availability, performance, and	integration of	Power.
(Non-BM)	participation in services. By	non-BM	
Data*	enhancing transparency,	resources,	
	stakeholders can better understand	Improved grid	
	and integrate these resources into	management.	
	the grid, facilitating more efficient		
	grid management.		
Automated	Involves using automated systems	Improved	Digital Mindset,
Reporting of	to generate and publish reports on	transparency,	Consumer
Optimisation	optimisation decisions. This	Enhanced	Value, Clean
Decisions*	approach enhances transparency,	accountability,	Power.
	improves accountability, and	Enhanced	
	provides stakeholders with timely	decision-	
	and accurate information on	making.	
	decisions.		

•

.

. . .

.

•

Continuous	Involves enhancing efforts to	Enhanced	Digital Mindset,
Improvement in	monitor and evolve the efficiency of	dispatch	Consumer
Dispatch	dispatch processes. This includes	efficiency,	Value, Clean
Efficiency	implementing best practices,	Improved	Power.
Monitoring and	leveraging advanced analytics, and	transparency,	
Transparency	ensuring transparent reporting of	Enhanced	
	dispatch performance.	system	
		performance.	
Inertia	Involve predicting the inertia of the	Improved grid	Clean Power,
Forecasts*	electricity grid, which is a measure	stability,	Decarbonised
	of its ability to resist changes in	Enhanced	Energy,
	frequency. Accurate inertia	system	Consumer
	forecasts are essential for	reliability.	Value.
	maintaining grid stability.		

•

•

•

.