

BUILDING THE VIRTUAL **ENERGY SYSTEM**

Jonathan Barcroft Workstream 2 Lead, National Grid ESO

Lois Milner-Elkharouf Project Manager, Arup

Simon Evans Digital Energy Leader, Arup

THE CHANGING ENERGY SYSTEM

40**G**W

18-30GW

120-230GW

Offshore Wind by 2030

FES - 2021

Interconnection by 2041

NOA - 2022

Flexibility by 2050

FES - 2021

"Increased data availability and digitalisation of systems is fundamental to enable markets and technology to manage peaks and troughs."

Bridging the Gap 2021

VIRTUAL ENERGY SYSTEM

Objective:

 enable the development of an ecosystem of digital twins for the GB energy system

3 workstreams:

- Stakeholder engagement
- Common framework & principles
- Use cases

INITIAL USE CASES

1. National Control

 enhancing optimisation and data integration capabilities to support dispatch decisions

2. Markets

 understanding consumer and technology dynamics to simulate flexible demand

3. Networks

 developing digital twins of physical networks and assets to support system stability 1 National Control

> ESO Roles

Markets

3
Strategy &
Networks

national**gridESO**

Virtual Energy System
Powered by National Grid ESO

VIRTUAL ENERGY SYSTEM: COMMON FRAMEWORK

- Benchmarking: Understanding the current cross-sector and global best practice for connecting assets, systems, and digital twins.
- Key socio-technical elements: Determining the key socio-technical factors that need to be considered for the Virtual Energy System to succeed.
- Demonstrating the common framework: Collaboratively prove and demonstrate, with industry, how the socio-technical principles work

ARUP

1) BENCHMARKING - APPROACH

Segments	Generation	Transmiss	sion E	Distribution	Retail	Consi	umption
Use cases	 Transition to net zero Asset monitoring & predictive maintenance Optimisation of energy production Linking electricity & gas networks Real time and predictive balancing Flexibility modelling for increase renewable Model energy storage needs Demand response Planning the future transmission network Optimise connectivity capacity Model stability of network Visibility of transmission & distribution interface 						
Sectors	Aviation E	Aus Est	tralia onia	ail Maritime Shippir		ecoms	Water
national gridESO		Sing		Virtual Energy System Powered by National Grid ESO			

1) BENCHMARKING - LESSONS LEARNT

People

- Skills
- Capability
- Key roles

Process

- Government
- Regulatory involvement
- Political support
- Transparent
 Engagement
- Contractual relationships

Technology

- Cyber security
- Computing power
- Connectivity
- Security & privacy
- Trust in distribution
- Open software
- Ease of reliable interoperability
- Modelling
- Cost of technology

Data

- Data best practices
- Data completeness
- Harmonise existing data standards
- Interoperability
- Common taxonomies & ontologies
- Data visibility

2) KEY SOCIO-TECHNICAL FACTORS

People

Defining roles & responsibilities

Formalise R&R for the VirtualES with the intentions of consumer benefits

Raising awareness & fostering culture

Share vision, belief & behaviours. Enabling practices to support VirtualES objectives

Building capabilities & skills

Understand skills & competency needs & develop capacity building strategies

PRIORITY FACTOR

Process

Aligning around industry codes & standards

Identify standardised practices in industry & align around them

Engaging Stakeholders

Nurture industrial, governmental and political support

Creating a governance framework

Set strategy and operational governance of the VirtualES

Determining operating environment

Business models, cross organisational legal, policy, & contractual framework

Data

Aligning models & taxonomies

Harmonise existing data standards, taxonomies and ontologies.

Establishing management & governance

Data management & governance requirements

Increasing visibility & enabling sharing

Nurture effective data sharing to support interoperability

Managing security

Set the core rules needed to address security, privacy and risk implications surrounding VirtualES data

Technology

Connecting physical infrastructure

Physical infrastructure, devices and their connectivity required to operate the VirtualES

Enhancing modelling and analysis

Modelling / simulation & analysis software used for current & future modelling

Creating interoperable tech-stack

Communication, cooperation & sharing across VirtualES & other in/cross sector projects

3) DEMONSTRATING THE COMMON FRAMEWORK

national grid

Serving the Midlands, South West and Wales

Testing of key factors

Cross segment

Wide appeal

Leverages existing work

Theoretically feasible

Project Supporters:

TRANSMISSION

Powering our community

3) USE CASE: VISIBILITY FOR FLEXIBILITY

Context

- Net zero is a key goal of the industry
- Energy increasingly coming from renewable & distributed generation
- Significant impact on the flexibility of the energy system as a whole

Hypothesis

- Lack of end-to-end visibility of T&D assets, connectors, network capacities, and constraints
- This creates obstacles to accurately model, assess and control the whole system flexibility
- Enhance whole-system flexibility by making relevant information visible and accessible in machine readable formats, to all actors

HOW TO GET INVOLVED

Show and tell – 7th April 2022

Join our Mailing List

Contact Us: VirtualES@nationalgrideso.com

Find out more: https://www.nationalgrideso.com/virtual-energy-system

