BUILDING THE VIRTUAL **ENERGY SYSTEM** Jonathan Barcroft Workstream 2 Lead, National Grid ESO Lois Milner-Elkharouf Project Manager, Arup Simon Evans Digital Energy Leader, Arup ### THE CHANGING ENERGY SYSTEM 40**G**W 18-30GW 120-230GW Offshore Wind by 2030 FES - 2021 Interconnection by 2041 NOA - 2022 Flexibility by 2050 FES - 2021 "Increased data availability and digitalisation of systems is fundamental to enable markets and technology to manage peaks and troughs." Bridging the Gap 2021 # VIRTUAL ENERGY SYSTEM ### Objective: enable the development of an ecosystem of digital twins for the GB energy system ### 3 workstreams: - Stakeholder engagement - Common framework & principles - Use cases # INITIAL USE CASES ### 1. National Control enhancing optimisation and data integration capabilities to support dispatch decisions ### 2. Markets understanding consumer and technology dynamics to simulate flexible demand ### 3. Networks developing digital twins of physical networks and assets to support system stability 1 National Control > ESO Roles Markets 3 Strategy & Networks national**gridESO** Virtual Energy System Powered by National Grid ESO ### VIRTUAL ENERGY SYSTEM: COMMON FRAMEWORK - Benchmarking: Understanding the current cross-sector and global best practice for connecting assets, systems, and digital twins. - Key socio-technical elements: Determining the key socio-technical factors that need to be considered for the Virtual Energy System to succeed. - Demonstrating the common framework: Collaboratively prove and demonstrate, with industry, how the socio-technical principles work ### **ARUP** # 1) BENCHMARKING - APPROACH | Segments | Generation | Transmiss | sion E | Distribution | Retail | Consi | umption | |-------------------------|--|------------|----------------|--|--------|-------|---------| | Use cases | Transition to net zero Asset monitoring & predictive maintenance Optimisation of energy production Linking electricity & gas networks Real time and predictive balancing Flexibility modelling for increase renewable Model energy storage needs Demand response Planning the future transmission network Optimise connectivity capacity Model stability of network Visibility of transmission & distribution interface | | | | | | | | Sectors | Aviation E | Aus
Est | tralia
onia | ail Maritime
Shippir | | ecoms | Water | | national gridESO | | Sing | | Virtual Energy System Powered by National Grid ESO | | | | ## 1) BENCHMARKING - LESSONS LEARNT ### **People** - Skills - Capability - Key roles ### **Process** - Government - Regulatory involvement - Political support - Transparent Engagement - Contractual relationships ### **Technology** - Cyber security - Computing power - Connectivity - Security & privacy - Trust in distribution - Open software - Ease of reliable interoperability - Modelling - Cost of technology #### **Data** - Data best practices - Data completeness - Harmonise existing data standards - Interoperability - Common taxonomies & ontologies - Data visibility ## 2) KEY SOCIO-TECHNICAL FACTORS ### **People** # Defining roles & responsibilities Formalise R&R for the VirtualES with the intentions of consumer benefits # Raising awareness & fostering culture Share vision, belief & behaviours. Enabling practices to support VirtualES objectives ## Building capabilities & skills Understand skills & competency needs & develop capacity building strategies **PRIORITY FACTOR** ### **Process** # Aligning around industry codes & standards Identify standardised practices in industry & align around them # **Engaging Stakeholders** Nurture industrial, governmental and political support ## Creating a governance framework Set strategy and operational governance of the VirtualES # Determining operating environment Business models, cross organisational legal, policy, & contractual framework ### Data ## Aligning models & taxonomies Harmonise existing data standards, taxonomies and ontologies. # Establishing management & governance Data management & governance requirements # Increasing visibility & enabling sharing Nurture effective data sharing to support interoperability #### **Managing security** Set the core rules needed to address security, privacy and risk implications surrounding VirtualES data ### **Technology** # Connecting physical infrastructure Physical infrastructure, devices and their connectivity required to operate the VirtualES # **Enhancing modelling** and analysis Modelling / simulation & analysis software used for current & future modelling # Creating interoperable tech-stack Communication, cooperation & sharing across VirtualES & other in/cross sector projects ### 3) DEMONSTRATING THE COMMON FRAMEWORK national grid Serving the Midlands, South West and Wales Testing of key factors Cross segment Wide appeal Leverages existing work Theoretically feasible #### **Project Supporters:** TRANSMISSION Powering our community ## 3) USE CASE: VISIBILITY FOR FLEXIBILITY #### Context - Net zero is a key goal of the industry - Energy increasingly coming from renewable & distributed generation - Significant impact on the flexibility of the energy system as a whole ### **Hypothesis** - Lack of end-to-end visibility of T&D assets, connectors, network capacities, and constraints - This creates obstacles to accurately model, assess and control the whole system flexibility - Enhance whole-system flexibility by making relevant information visible and accessible in machine readable formats, to all actors # **HOW TO GET INVOLVED** Show and tell – 7th April 2022 Join our Mailing List Contact Us: VirtualES@nationalgrideso.com Find out more: https://www.nationalgrideso.com/virtual-energy-system