	ENHANCED FREQUENCY CONTROL					
#	Name	Description	Categories	Feedback		
	Appropriate comms standards for	Your home car charger isn't on the OpTel network. That's just about ok at				
	different sizes of resources	the moment, but with things like ZCO coming through, it will soon be a				
		problem. There is a need for communications standards that cascade				
_1		appropriately, as in metering.	Comm Network	Open Points		
	what kind of communication is required?	500ms response will require very fast and reliable mean of				
2		communication	Freq. Respo.	Open Points		
	Decreasing 500ms round trip	According to 'call health', this teams call has 25ms round trip with 0.19%				
		packet loss. Is there learning from the communications industry on				
		minimising lag? It strikes me the benefit of additional speed would more				
3		than outweigh missing packets	Comm Network	Best Pract.		
	Cost targets	What are the cost targets for load controllers? Who would bear the cost?				
4		(High cost would exclude participants)	Freq. Respo.	Risks		
5	automation of instruction	May be required to meet the latency requirements	Comm Network	Best Pract.		
	C37.118 security	Is this protocol secure for use on the internet? My understanding is this is				
6		designed for use in private network?	Tech Dev.	Risks		
	Comms min requirements					
7			Freq. Respo.	Open Points		
	Interaction with grid forming inverters?	Slide 26 shows interaction with other services but how does this 'play'				
8		with grid forming inverters?	Freq. Respo.	Open Points		
	End user participation	What would likely benefits be and therefore likely level of future				
9		participation- or would you expect it to be mandatory	Freq. Respo.	Open Points		
	Link w market reform/rules	Can aggregators overlap regions? Can local controllers participate with				
10		more than one aggregators	Freq. Respo.	Open Points		
	Opportunity to test what needs to change	Test wind and battery together - change ROC or how other incentives				
11	in the market rules	need to change, split the up and down, etc	Freq. Respo.	Open Points		
	Look at trading exchanges for architectural	If we consider requirement of real time monitoring of frequency, logic				
	best practise	layer to determine next best action and dispatch instruction				
		initiated/confirmed; this has many similarities to algo trading on				
12		commodity exchanges, with many participants.	Comm Network	Best Pract.		
	Consider ireland	Ireland has even greater penetration of non synchronous generation what				
13		lessons are being learned	Freq. Respo.	Best Pract.		
14	Mechanism for instructing smaller units	Challenge of greater complexity - analogy to MDI	Tech Dev.	Open Points		

VIRTUAL ENERGY SYSTEM						
#	Name	Description	Topics	Feedback		
		ESO uses data science to create forecasts and operating plans. Others				
		use these forecasts as inputs to their own models and plans. This				
		invalidates ESO's starting assumptions - we have a loop. To avoid such				
1	Data Science Loops	loops, run models in the open.	Technology	Challenges		
		Big challenge around starting without waiting for a perfect model to				
2	Starting the journey	be 'designed'	BusinessCase	Challenges		
		Who will own the core of this and who will govern the access /				
3	Ownership and governance	exposure / security as it scales across the industry?	Gov/Reg	Challenges		
		Digital twins with competing solutions - EVs scale up vs I&C demand				
4	Integration of competing solutions	response/self-consumption vs distribution expansion	BusinessCase	Challenges		
		The idea is that third party systems (e.g aggregator) can connect to				
		test communications with the system, to virtually provide service (e.g				
	Third parties connect to the virtual	DSR service) and see that everything is working, and virtualize their				
5	system	value.	BusinessCase	Challenges		
		Make sure the backbone is appropriate. Timeseries and ensuring				
		'when' data is available / published is a key foundation to ensure the				
6	Timeseries & resolution	VES will be representative	Technology	Challenges		
	Connecting to research	What kind of relationships in research and innovation mode are				
7	organisations	needed	Technology	Engagement		
		Very different approaches are needed for planning, ops planning and				
		ops.				
		In particular latter tends to involve passing of summary information				
	Decision analysis and control	rather than raw data - in technical terms this might be the Lagrange				
8	approaches	multipliers in an optimisation problem	Technology	Challenges		