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Overview of Presentation Strathlyde

1. Introduction to the PNDC
2. Role of PNDC in the testing of EFCC
3. Proposed testing configurations

4. Where we are and next steps
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Main features of PNDC o O
= Realism
= Flexibility

= Control room,
industry-standard

SCADA system,
laboratories

= Accelerated testing (voltage, frequency, unbalance,
power quality, faults...)

" Enhanced instrumentation and recording



Grid/islanded modes of
operation

Grid connected mode:

e Connected to 11kV distribution
network.

« Supplied through an
11/11kV isolation transformer.

Islanded mode:

« The network is supplied from a
5MVA motor/synchronous generator
set.

« Allows for voltage and frequency
disturbances to be applied.
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11 kV system
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The SFC scheme and the role of PNDC

® PMUs

LIS

Wind farms

Energy storage

CCGT
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Fast, coordinated response
closest to the disturbance




The SFC scheme and the role of PNDC
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PNDC Tests: two stages

University of %

Stage 1 : Open-loop test Strathclyde
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Stage 2: Closed-loop test: P-HilL simulation

- Tests dependability and security of the SFC scheme gmrsn,ﬁf
- Replace part of RTDS network with PNDC network Gliéll;ag‘(:)wcy €

- SFC control over PNDC load(s)
- Emulation of latency & jitter to investigate the impact of communication issues
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RTDS model being developed
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Progress

. Strathclyde
Comprehensive test plan developed. 5

5-bus RTDS model developed and being refined.

PMU at PNDC and accurate voltage measurements in place.
Simulation of various disturbances event using PowerFactory on-
going.

In the process of developing detailed specific test
implementation plans and preparation of associated activities.

Next steps

Finalise specific test implementation plans and P-HilL arrangement
at PNDC.

Initial “pre-testing” activities — frequency and voltage transients.
Investigate the impact of communication systems performance on
the SFC scheme.



Points to consider

Strathclyde
Glasgow

* Ensuring a comprehensive list of credible events
that allows intensive testing of the capability of SFC
scheme under a wide range of scenarios.

* The requirements for the P-HiL arrangement to
form a testbed with sufficient accuracy,
repeatability and capability.

* Definition and quantification of realistic
communications performance parameters and
ranges to be tested.
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Demand Response.
Delivered.

Smart Frequency Control
Developing demand response methods

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitrity Ltd. 2015. Al rights reserved.



Flexitricity in a nutshell

e Leaderin |&C demand
response

e >6,400 demand
response events

e Industrial, commercial,
public sector

e CHP, load, diesel,
hydro, UPS

e 100kW to 24MW

www.flexitricity.com 0131221 8100

24-hour operations
Fully automated

1s to 30 minute
response

Innovative

© Copyright Flexitricity Ltd. 2015. All rights reserved.



The zoo of demand response activities

Frequency Wind following Capacity Energy trading
response market

Distribution New network Voltage Peak reduction
constraints challenges support

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitrity Ltd. 2015. Al rights reserved.



60,000 -

50,000 -

40,000 -

30,000

20,000

Transmission system demand (MW)

10,000

O T T T T T

Nuclear power station failed at 16:34;—>
632MW generation lost

Saturday3rd January 2009
Day peak 17:15-17:20

STOR cease received at 17:46

.

STOR call received at 16:38
Flexitricity started generation in
same minute; full power by 16:4

3

M France

® OCGT (gasoil)
B Pumped Storage
B Wind

W Hydro

| Oil

M CCGT (gas)

= Coal

Nuclear

0° 0"'

& &

0000000000000000

$ X

00000060 000900@ 00000000
&qx '\, '»'»

www.flexitricity.com 0131221 8100

Flexitricity

© Copyright Flexitricity Ltd. 2015. All rights reserved.



Demand-side frequency response
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Smarter Frequency Control

e Objective:
— Can demand response help solve the inertia problem?
e Providing a safety net?
e Providing more synchronous spinning metal?

e Adjusting load dynamically when frequency events
occur?

— Can it do this economically and efficiently?
— Which resource types are best for which service?

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitricity Ltd. 2015. Al



Smart Frequency Control

e Flexitricity works with 3" party sites to provide MW
capacity for demand side management

e Capacity will be provide for SFC in 3 ways:
— Static RoCoF
— Spinning Reserve
— Dynamic RoCoF

Flexitricity

www.flexitricity.com 0131221 8100



Static RoCoF

:

- Delivers full
capacity for 30mins.

: b .‘WLMM.“.MM

- Trips at threshold
RoCoF value

- Responds within
~0.5-1.0 sec.

- Generation or load
management

- Similar to FCDM

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitrity Ltd. 2015. Al rights reserved.



0150 - r S000000

0050

. ROCOF

240 ngsE - mzs 1 ) 1zgezy o 1zAEs 3 Trip threshold value

Site Import Power

., ROCOF {Hz/sec)

-3.150 -

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitrity Ltd. 2015. Al rights reserved.



Spinning Reserve

- Maintain frequency
by increasing inertia

- Rely of use of CHP
units

- More spinning
metal = more inertia

- Participating site
will need => 2 CHP
units

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright lexitricity Ltd. 2015. Allig
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Dynamic RoCoF

- For site with
variable loads

- Load varies in
response to changes
to rate of change of
grid frequency

- Uses variable speed
drives

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitrity Ltd. 2015. Al rights reserved.
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What customers should expect

e No disruption
— Production unaffected
— Customer in control
— Defensive engineering

e Worth it
— We pay for hardware
— Flat fee for trials

— Sites proven for
enduring service

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright lexitricity Ltd. 2015. Allig



Defensive engineering
|

Run/stop

Central

Outstation

€

Sit Encoded Encoded
tl e“ operating rules operating rules
cOntrofier Continuous Messages Continuous
monitoring monitoring
| 1-2s updates 10s updates
I
| Monitoring
| and control
| Flexitricity
I operator
I
: I o N,
Site control . Flexitricity control FIEXIt"Clty

www.flexitricity.com 0131221 8100 © Copyright Flexitrity Ltd. 2015. Al rights reserved.



Rules of engagement

e Customer in control e Ensuring trial success
— Sets operating rules — Engaging with site
— Sets schedules of engineers
availability — Detailed measurement
— Opt out at any time — Ensuring events occur

— Hard and soft opt-out
e Limitations

— Total number of events
— Period between events

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitriciy Ltd. 2015. Al rig



Timeline

e Setting up for trials
— Resource identification and appraisal: now
— Solution design: spring 2016
— Commissioning: summer 2016
— Ready for trials from late 2016
— Trials completed by October 2017

e Hitting the milestones
— Defensive engineering takes time
— Talk to us now

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitricity Ltd. 2015. Al



Flexitricity operates the largest and most advanced demand-response portfolio in
Britain. Join us today. Call 0131221 8100.

FLEXITRICITY

E info@flexitricity.com
T 01312218100

Flexitricity

www.flexitricity.com 0131221 8100 © Copyright Flexitrity Ltd. 2015. Al rights reserved.



@ www.belectric.com

National Grid — Dissemination event

"Distributed response: PV & Battery Storage”

EFCC — Enhanced Frequency Control Capability ®BELECTRIC®



BELECTRIC: Company profile

Yearly total revenue of 550M EUR

* More than 1,200 employees in 20 countries

* Over 120 patents registered since 2001

* Technology leader in the utility-scale solar power business

112 N 51010 R 15(0]0 b

YEARS OF CONSTRUCTION WORLDWIDE INSTALLED
EXPERIENCE WORKERS SOLAR POWER
WORLDWIDE

www.belectric.com



BELECTRIC: International

BELECTRIC Headquarters: Germany - Regional offices: Australia, Chile, Czech Republic, Denmark, France,
Greece, India, Italy, Japan, Malaysia, Mexico, Poland, Romania, Saudi Arabia, Switzerland, Turkey, United Arab
Emirates, United Kingdom, USA

‘.} www.belectric.com




Agenda

Batteries: state of the art
- EFCC: Advantages of Batteries
- EFCC: Combined frequency response from PV and Battery

- EFCC: Challenges of the transformation to renewables

‘.} www.belectric.com




Battery Energy Storage in Steglitz 1986-1994

One of 12 battery rooms:

NS M o
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!

© Energie-Museum Berlin

Operational scheme: frequency response

Power: 17 MW, 14 MWh

Lead acid batteries, total cycles after 7 years of operation: ~ 7000
Max. power gradient limit: 12 MW/s

Payback time: 3 years

‘.} www.belectric.com




Battery standalone: Alt Daber battery park

Technology: Advanced Lead Acid

Capacity: 1,9 MWh

Power: 1,3 MW (1,6 MW) at a 68 MW PV solar farm

Frequency response

Commercially operating — equals the spinning reserve of a 25MW conventional PP
Alt Daber/Germany

@BELE_CTR]C®

www.belectric.com



Prequalification: Alt Daber battery park

Press release and articles about the
commissioning and the successful
prequalification of the Energy Buffer Unit in

Alt Daber.

a S st
I plus Storage goe

S large

PO ——

Regelenergie ads
—dem Solarkraftwerk

—
larksaftwers e "
bisleond H'IBU u S,
“Enersy Butr et
SOLARENERGIE E PREINAEEST T R

s 3y

Netzstabilitat gefdllig?

Solarpark und Grofspeicher licfern schneller Regelcistung o die
Hochupannungscbene sl herkomanliche Kruftwerke

@BELECTRIC®

Press Release
Friday, 8 May 2015

Energy Storage System BELECTRIC EBU prequalified for
frequency response

BELECTRIC EBU meets the prequalification requirements and is thus able to provide most
important balancing service for the electric grid

Formally i Jast at the Solar Power Plant Alt Daber in Brandenburg,
BELECTRIC's Energy Buffer Unit (EBU) has been successfully prequalified for 1.3MW frequency response by the
transmission network operator (TNO) S0Hertz. The Energy Buffer Unit is thus officially approved for the provision of
the most important ancillary service for grid operation: frequency response. From the Alt Daber location, the
BELECTRIC EBU will assist in Germany-wide frequency control in the high voltage grid. Equipped with the latest
storage it i a necessary for a reliable grid operation, one that is increasingly
influenced by renewable energies.

To be prequalified, a technical unit must demonstrate that it meets the TNO's requirements for security of the
supply of frequency response. New ground was broken for capacity-limited units {i.e. battery storage) and, in close

with the TNO, fate test were defined. Evidence has thereby been provided that
battery storage improves the safety of transmission network operation, even during heavy fluctuations like a
generator or Interconnector trip. Now that the BELECTRIC EBU has successfully passed prequalification, Vattenfall
can market the Alt Daber energy storage system as part of its frequency response pool. Services from the EBU will
be offered on the frequency response market on a weekly basis. Due to rising prices in this market over the last
three years, attractive business moedels are now appearing for the use of energy storage therein,

With its Energy Buffer Unit, BELECTRIC delivers a state-of-the-art battery based energy storage system in a
container solution, The EBU is shipped with power inverter and medium voltage transformer and features a
nameplate power between 800kW and 1400kW, depending on configuration. It has a storage capacity of 948 kWh
and is available starting at 560,000 EURO. It can be prequalified for frequency response on the German
transmission network with up to 650 kW, taking into account reserve capacity required by the German TNOs. The
advanced lead-acid batteries were developed for a long service life and high cycling stability for high performance
Thanks to ization, the serially produced BELECTRIC EBU is the most cost-effective utility scale
energy storage system currently available on the market for frequency response and other cyclic applications.

About BELECTRIC: BELECTRIC is one of the most successful enterprises
in the realization of free-field solar power plants and utility-grade
energy storage systems. Through its joint venture partners and
subsidiaries BELECTRIC operates worldwide. Its sophisticated system
expertise is the result of the high degree of vertical integration in the
and i The iliation of
economic efficiency and ecology forms the basis for the company’s
sustainable success. With numerous patents and innovations,
BELECTRIC has proven its technological leadership in the industry.
C ing its solar power i ilities BELECTRIC
Drive® manufactures intelligent charging products for electric vehicles,

Photo: BELECTRIC EBU at the salar power plant
Alt Daber, Germany

Publication and repeint frée of charge; specimen copy is requested.

BELECTRIC GmbH, Marketing & PR
Waderbruneer st 10

97509 Kolitzheim, Germany

Phone: 09385 9804 5701, Fax: 09385 9804 -59701
Email: pr@belectric.com ntemet: www belectric.com

www.belectric.com



Battery standalone: WEMAG battery park

Technology: Samsung SDI lithium-ion
Capacity: 5 MWh

Power: 3,8 MW (5 MW)

Frequency response

Commercially operating
Schwerin/Germany

‘ } www.belectric.com




Battery standalone

Technology: LG Lithium-Polymer
Capacity: 2,7 MWh

Power: 1,8 MW

Frequency response
Commercially operating
Dresden/Germany

: DREWAG battery park

www.belectric.com



Battery standalone: UPSIDE battery park

Technology: lithium-lon

Capacity: 5 MWh

Power: 5 MW

Frequency response

Commercially operating
Neuhardenberg/Germany —

i LH-__ JL_ i

‘.} www.belectric.com




Hybrid System: Battery Innopark Kitzingen

* Main revenue stream: ancillary service
e Battery in combination with diesel Genset and PV
— Peak shaving
— Self consumption
— Increasing prequalified power for ancillary services

* Island grid test field

e
— Energy Buffer UnitE

‘ } www.belectric.com




Battery Projects: UK

R !
Installations 1 November 2013 éy’ —— Shetland 1 MW 6 MWh
Commissioned het 1 MW 3 MWI
Jnaer construction »
bl &é Orkney 2 MW 500 kWh

Decommissioned 2

Darlington 2.5 MW 5 MWh
100 kW 200 kWh ~__ -
50 kW 100 kWh o

___—— Nairn 100 kW / 150 kWh

~ Wooler 100 kW 200 kWh
50 kW 100 kWh

- Maltby 50 kW 100 kWh

' Hemsby 200 kW 200 kWh

| A
!

D to

6 kW 14.4 kWh

‘.} www.belectric.com




Practical Example: Leighton Buzzard

* Technology: lithium-ion NMC, Samsung SDI

e Capacity: 10 MWh

* Power: 6 MW

* DNO Peak shaving / ancillary services including frequency response in preparation
e Commercially operating

* Leighton Buzzard/UK, operated by UKPN

4

/
/

‘.} www.belectric.com




Practical Example: Rise Carr, Darlington

* Technology: 123 sytems Inc., Lithium Iron Nanophosphat

e Capacity: 5 MWh

* Power: 2,5 MW

 DNO Peak shaving / voltage support

e Commercially operating

* Rise Carr, Darlington/UK, operated for Northern Powergrid

‘ } www.belectric.com




Agenda

- Batteries: state of the art
EFCC: Advantages of Batteries
- EFCC: Combined frequency response from PV and Battery

- EFCC: Challenges of the transformation to renewables

‘.} www.belectric.com




Firm Frequency response

P(f) dlagram for frequency response in UK
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Why fast Batteries?

4995

4949

49.85

498

49.73

Measured Freguency (Hz)
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—— Spalding Morth

49.65

44 46 45 ) 50 52 54 56
Time (sec)
© Alstom / Psymetrix
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How fast are batteries?

Active 750 T T T T T T T T T T T T

power i _ —
[kW] 700

6530 - n
B00
550 - n
500
450 N
400 - n
350 - n
300 n
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200 - g
150
100 - n

S0 n

0 I ! L I I I I I I |
0 0.m 002 o003 o004 005 0068 007 008 009 0.1 0.1 012 013 014 0415

Time [s]

55 ms from request to full response
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Using fast Batteries

RoCoF response with fast battery
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Using fast Batteries

Failure simulation (217 Mw / 1760 MW)

without storage with storage (20 MW)
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Using fast Batteries

Operation mode of instant reserve

Reuter—-West, Block E, -119 MW

Leistung/MW Frequenz /mHz
20.-1 500

Datum : 01.09.88
Uhrzeit : 16: 04: 49

12.-1 300

-

M Batteriespeicher

Dampfspeicher

eason for battery

based response,

“3

Py

-12.-1-300

-20.—--500

4.1 100
AAMIAAIA AL
v .rrr vyryy 3 LA T | L 1 '. '
L /‘_,,J'/:“ ’ °

10
12—

then and today.

Netzfrequenz

© Energie-Museum Berlin
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Does physics change over time?

- TERNA, Italy, 2014:

v

N

T
L;\‘ 0.1
N

0.05

0.05

-0.15
Source: Té

2rna

0.2

s SCEnario A
600 MW of Traditional Primary

s Boenario C
450 MW of Traditional Primary
+ 150 MW of Batteries

Time (s)

T

40

50 [19] 70

a0

— Scenario B
600 MW of Traditional Primary
+ 150 MW of Batteries

Scenario D
750 MW of Traditional Primary

Activation time is equally

important as pure power :

- Short response times
reduce total power needed
for frequency response

- Savings for the customer

System: “Pay as performed”,
RoCoF-Following, EFR,
EFCC,...

www.belectric.com




Agenda

- Batteries: state of the art
- EFCC: Advantages of Batteries
EFCC: Combined frequency response from PV and Battery

- EFCC: Challenges of the transformation to renewables
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olar farm in the UK
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Distributed control power

- Solar power Battery storage
P
\‘-.
SoC 50%
A
t
No frequency response Positive and negative response
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Distributed control power

Solar power

No frequency response
P

Negative response with PV

Battery storage

SoC 50%

1
.

t

Positive and negative response

SoC 100%:

higher response capability

Positive response with battery
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Distributed control power

- Solar power Battery storage
P
\‘-.
SoC 50%
A
t
No frequency response Positive and negative response
P P
SoC 100%: |
higher response capability
t
t .
Negative response with PV ‘ lPositive response with battery
P SE——
77777777 ‘, . «—— Reduction of irradiation:
t
N e

Day chart "‘m'
o www.belectric.com




Belectric deployment
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Belectric deployment

o
s
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Belectric deployment

- Local
$H— PMU /)éf :1-J 1 Controller

1" |EEE C37.118 PMU Control
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Belectric deployment

Local

<>—®U /)@f :}-] 1 Controller
| |

1" |EEE C37.118 PMU Control
IEC 61850 GOOSE (MMS)

9%

IEC 61850 GOOSE
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Belectric deployment
Local

<>—wu /)éf :1-J 1 Controller
[ -I_r_l

10 ms

20ms

<120 ms response time
 Communication with IEC61850
* Processing Hybrid Controller

* Realtime Ethernet Fieldbus

* Processing inverter

1" |EEE C37.118 PMU Control

@ IEC 61850 GOOSE (MMS)

IEC 61850 GOOSE
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Agenda

- Batteries: state of the art
- EFCC: Advantages of Batteries
- EFCC: Combined frequency response from PV and Battery

EFCC: Challenges of the transformation to renewables
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Transformation from synchronous
generators to inverter-based response

Turbogenerating set of steam turbine (yellow) with
synchronous generator (red)
Source: Siemens

Central inverter
© GE Power Conversion
3
~ Fraunhofer
® . ©BELECTRIC'
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Synchronous machine vs. battery

... S ..
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© Wikipedia

Category Synchronous Machine | Battery storage

Grid building Intrinsic Electronic
Resonance frequencies Not an issue
and synchronization Is an issue due to lack of
fault mechanical inertia
. Mostl Distributed units
Distributed response y' . .
centralized units possible

Electronically

Inertia Intrinsic simulated
Over current capability  Very high Usually 20-30%
Response from “idle s Yes

state”
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Synchronous machine vs. battery

... S ..

“
L '
= &
L] .U
& 3
= s —W
L3 '-
B

PR

© Wikipedia
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Category

Grid building

Resonance frequencies
and synchronization
fault

Distributed response

Inertia

Over current capability

Response from “idle
state”
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Mostly
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Battery storage
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due to lack of
mechanical inertia

v

Distributed units
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Usually 20-30%
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Role of CCGTS In
Enhanced Frequency

Response

Christopher Proudfoot & Peter Wilkinson
Centrica, 25/02/16




Agenda

» How the system has changed in 27 years?
» Role of CCGTs

» Gas Turbines and frequency response

» What are the options for faster response?
» Simulation Results



How the system has changed in 27 years?

» The demand for Scotland, England and Wales at
1030 hours on Saturday 24 June 1989 was:-

A) 24,500 MW
B) 26,500 MW
C) 29,000 MW



How the system has changed in 27 years?

» The demand at 0930 hours on Saturday 25 June
2016 (seasonal normal temps, decent breeze and
reasonable sunshine) is predicted (no guarantees!)
to be:-

A) 26,000 MW
B) 28,000 MW
C) 30,000 MW



How the system has changed in 27 years?

» At 1030 hours on Saturday 24 June 1989, the
number of generators synchronised to the
transmission system is estimated at:-

A) 82
B) 99
Cc) 111



How the system has changed in 27 years?

» At 0930 hours on Saturday 25 June 2016 the number
of generators estimated to be synchronised to the
transmission system is:-

A) 54 (45% reduction)
B) 61 (38% reduction)
C) 68 (31% reduction)



Role of CCGTs

Load Factor (%)

100

Typical 500 MW CCGT Running Profile

2007 2008 2009 2010 2011 2012 2013

I L oad Factor  ====Number of Starts

2014

2015

300

250

200

150

100

50

Number of Starts



Role of CCGTs


https://www.youtube.com/watch?v=VQ6oXQ4tFow

Role of CCGTs — a recent frequency excursion

/M X,
Vg

00 496
11112015 01:00:00 % = 200 hours < b "




Just to prove the system really has changed!

Reactive Utilisation From Large Coal PS (MVARh)
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Gas Turbines and Frequency Response

Primary Response:-

» Provided by the Gas Turbine(s)

» ST provides only minor contribution
» Response time of the HRSG is the limiting factor

» Large Gas Turbines — Modern Strategy
» Store energy and use ST to reduce initial response time
» Grid compliance requires less than 2 seconds to react

» Response is scheduled by frequency error (dF)
multiplied by a gain factor (K)



Gas Turbines and Frequency Response

Secondary Response:-

» Provided by both GT and ST
» Can be greater than Primary

» Alternate strategies can reduce GT output as ST
rises

» Response sustained as long as the deviation is
present



Gas Turbines and Frequency Response

» Frequency response capacity can be calculated based
on ambient conditions, design curves and active power

» Maximum delivery gradient is governed by machine
limits defined by the Original Equipment Manufacturer

(OEM)

» For a gas turbine faster response comes at a cost in
terms of material life due to cyclic thermal stresses



What are the options for faster response?

» Change to existing control strategies - traditional
proportional response to frequency error

» Rate of change of frequency based response
» Potential indication of the event severity
» Reduced undershoot and deviation from target frequency
» External demand for response e.g. GE (Psymetrix)



What are the options for faster response?

» How would we integrate that into a traditional GT DCS
without loosing the benefits of traditional compensation?

» How could we utilise the response capacity available?
» Commit response to one or more than one strategy?

» How would the response behaviour look?



SimApp Workstation Testing

» Option A — Proportional + Derivative Response

» Summating traditional response demand with the derivative of
the frequency signal (ROCOF)

» Option B — Maximum of Proportional or Derivative
» Responding to the maximum demand from all strategies
» Optimising for speed of response



GT Power / Frequency Controller Simulation
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P + D Response
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Proportional + Rate of Change of Frequency

» In theory extra response is scheduled against the rate of
change

» Once the frequency stabilises the additional response
decays to zero

» In fast deviations the benefit is usually lost due to the
dynamic limits of Gas turbine performance imposed by
the OEM



-0.5Hz ramp over 10 seconds
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-0.5Hz ramp over 20 seconds

D) Time response
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-0.5Hz ramp over 20 seconds
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Maximum of Por D R
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Maximum of P or D Response

» Provide the correct proportional level of response at the
maximum loading rate

» Anticipates the actual level of response that will be
required based on the rate of change of falling

frequency



-0.3Hz ramp over 10 seconds Max (P, D)

~

Ormerepore, wpw w CETE . W a eEe)

File Plots Tables 7

@ g I apPp I g B
Recorder | [ata growp O | Heport|
| 14 I ¥ | Source group 0
] ||[ett Power 1w 163.06
3: total kdf 27827
. DT 27 827
- Kdf Rate Limited 27 827
275 T i DT limiter 27827
5 l[ I'I 1" df max 0.300M
g | i KdF Droop Gain MVW/Hz 27.501
1:2 ! 1 [\Valve | Fuel ko/s 10185
- | i FR Comp Act. P SPMW 15163
125 '} =) dfidt filter 0.29924
10 —
Fil T_
: ] \\
25
. \
25 -
3
-Th
-10 'l
128
15
b I} IIU 15 20 25 30 35 40 45 60 55 60 BB 7O 75 &0 @5 A0 45 100 106 110
Wt D) o




-0.3Hz ramp over 10 seconds Max (P, D)
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-0.5Hz Ramp over 20 seconds
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. Time response
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Questions?



Enhanced Frequency Response

V....I—:...p el

Adam Sims

Senior Account Manager



Enhanced Frequency Response

* Increase of potential largest infeed Ioss}

e System inertia forecast to reduce by
Szl 15%-25% by 2020

e Decrease in “traditional” frequency
response providers




Enhanced Frequency Response

New Service Opportunity Identified — Summer 2015

e Continuous dynamic frequency response delivering in 1s from a deviation
e Aim to procure approximately 200MW, with a cap of 50MW per Applicant

Invitation for Expressions of Interest — October 2015

e Over 60 submissions received
e Over 1.3GW of capacity proposed

Finalise Invitation to Tender Pack — April 2016

e Aim to include application process, technical description, assessment
criteria, value periods, contract drafting

Tender Event — June 2016

e Aim to assess tenders by end of July
e Service delivery 18 months after tender award




Enhanced Frequency Response
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Enhanced Frequency Response

e Pre-fault frequency
control

Enhanced

Frequency
Control
Capability

e Post-Fault frequency

. Primary,
containment

Secondary, High

e Existing services will
still be required




Enhanced Frequency Response

Minimum System Inertia Including Contribution from Embedded Generation
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