Fault Ride Through Study Work

Antony Johnson
National Grid – TNS Technical Policy

Overview

- High Level Fault Ride Through Requirements
- ENTSO-E Requirements and Implementation
- High Level determination of Voltage Against Time Curves
- Study Cases
- Summary
- Discussion

High Level Fault Ride Through Requirements

Required to:-

- Ensure Generation remains connected and stable during main protection operating times for Transmission System faults.
- Prevent voltage collapse during Transmission System Faults
- Ensure appropriate recovery of active power following fault clearance to prevent frequency collapse
- Ensure sufficient generation robustness and network resilience to transmission faults cleared in backup protection operating times.
- Ensure requirements are consistent with the credible operating and design criteria covered in the SQSS
- Be achievable by manufacturers and Generators

ENTSO-E RfG - Fault Ride Through Requirements - Voltage Against Time Profile - Figure 3

nationalgrid

ENTSO-E RfG - Voltage Against Time Parameters – Table 7.1 – Type D Synchronous Power Generating Modules

Voltage parameters [pu]		Time parameters [seconds]	
Uret:	0	tclear:	0.14 - 0.25
Uclear:	0.25	trec1:	tclear — 0.45
Urec1:	0.5 - 0.7	trec2:	trec1 - 0.7
Urec2:	0.85 - 0.9	trec3:	trec2 - 1.5

Table 7.1 – Fault Ride Through Capability of Synchronous Power Generating Modules

ENTSO-E RfG - Voltage Duration Profile – Range compared with GB Requirement

Implementation

- For the purposes of this section of work consider the requirements only in respect of Large directly connection Synchronous Plant
- Determine Voltage against curve within range permitted by ENTSO-E Drafting – study work dependant
- Active Power Recovery as per current GB requirements There should be no reason to change this unless there is good reason not to do so.
- Asymmetrical faults as per current GB requirement applicable only for faults cleared in main protection operating times?
- Pre and post fault conditions specified in the Bilateral Agreement
- Reactive Power injection for Synchronous Generators not specified in the ENTSO-E Requirements for Generators and would remain at National level.

ENTSO-E RfG - Voltage Duration Profile – Range compared with GB Requirement

Determination of Voltage nationalgrid against time curve and other characteristics

- For Directly Connected Synchronous Generation the area of complexity is in the zone shown in slide 8.
- System studies required to determine voltage against time curve.
- As a minimum the voltage against time curve should cater for the list of events defined in the SQSS plus overall industry resilience
- No reason to change other factors such as active power recovery and reactive current injection.
- There are still some potential issues over the length of the voltage depression for longer duration faults eg 85% volts for 1.5 seconds where as GB is 85% for 3 minutes
- Need to understand the impact on station auxiliaries.

Determination of Voltage against time curve

- Achievable requirements
- Robust to range of System Conditions Generation to remain connected remote from fault cleared in back up operating times
- Requirements to be consistent with ENTSO-E RfG and not more onerous than current GB Specification

Study Cases

- Full GB Network under 2013 minimum demand conditions ~ 18GW
- Range of scenarios investigated
 - Low non-synchronous generation
 - Medium non-synchronous generation
 - High non-synchronous generation
- Range of faults applied to strategic parts of the network, including
 - Seabank
 - Drax / Eggborough
- Standard fault clearance times applied plus longer duration faults to cater for issues such as backup protection
- Analysis of high impedance faults
- Effect on voltage profile observed.
- Studies run in Digsilent Power Factor Factory

Fault Ride Through

nationalgrid

Example

Fault Ride Through

nationalgrid

Example

Seabank – Whitson – Clfynydd, Melksham - Imperial Park DC – 140ms fault nationalgrid (Z=0)

Seabank – Whitson – Clfynydd, Melksham - Imperial Park DC – 140ms fault nationalgrid (Z=0)

Seabank – Whitson – Clfynydd, Melksham - Imperial Park DC – 140ms fault (Z=0)

nationalgrid

Rotor Angle

Transmission Voltage

Generator Terminal Voltage

Rotor Angle

Generator Terminal Voltage

Drax – Eggborough Double Circuit

(Studies / scenarios as per Seabank – Plots not illustrated)

Eggborough 400kV Substation

ENTSO-E RfG - Voltage Duration Profile – Study Results

Study Case – eg 0.5 p.u for 70ms

ENTSO-E RfG - Voltage Duration Profile – Study Results

Voltage Duration Profile – Options compared with GB and ENTSO – E Requirement

Summary

- Two initial options proposed for voltage against time curve
- Suggested curves believed to provide a blend of the ENTSO-E Requirements and existing GB requirements. The proposals are fully consistent with the ENTSO-E requirements
- In the scenario's run, an event such as a stuck breaker has a significant impact on System Voltage recovery (ie voltage remains low)
- Adjacent Generators run at full load and full import of reactive Power (least stable)
- Additional study work required in respect of:-
 - Wider sensitivities
 - Other scenarios
 - Effect on Power Station Auxiliaries
 - System Frequency impacts
 - AVR Voltage High post fault voltage observed

Discussion

national**grid**