

DEMAND CONTROL

Tim Truscott – Network Operations

Safety & Housekeeping

Fire Alarm

Toilets

Refreshments

Lunch

System Balancing

- Need to Balance Energy
 - Allow for largest credible real time loss (1320MW)
 - Demand uncertainty
 - Generator breakdown
- Actions on BMU's (Demand and Generation)
- Standing Reserve (BMU's and non BMU's)
- Manual Demand Control (DNOs and Directly Connected Customers)
- Automatic Action (LF Relays)

Demand Control - Grid Code OC6.5

- <20% Demand Reduction in 4 blocks of 4-6%
- Reductions over 20% can be required in 5% steps up to 40% (If High Risk of Demand Reduction issued at day ahead, otherwise on best endeavours basis)
- DNO to use voltage reduction or demand disconnection to achieve target
- Reduction based on demand at the time
- Reduction must be achieved in 5 minutes
- Traditionally assumed that the first 10% of demand reduction achievable by 6% voltage reduction

Demand Control Effectiveness

- First queried during Exercise Phoenix (2006/7)
- Limited tests carried out by EDF Energy and Central Networks in Summer and Autumn 2008
- Tests were on 3 types of demand
 - Domestic, commercial & large industrial
- 3% voltage reduction gave average of 3.4% demand reduction (5% historically expected)
- Minimum 2.6%, maximum 5.1% demand reduction
- Reduction was sustained but difficult to identify amongst normal demand variation
- Customer supplies may be interrupted earlier than previously anticipated

Demand Control 27 May 2008

Loss of 2020MW in 3 mins

Frequency Deviation following exceptional generation loss (1993MW)

Demand Control 27 May 2008

- 546 MW Demand (1.5%) Tripped by LF Relay
 - Stabilised frequency
 - 2266MW Demand armed to trip at 48.8Hz
 - Relay tolerance and stable frequency prevented other trips
- Stage 1 Demand Control Instructed at 11:40 to 11:46
- Issued to 9 DNOs (5% = 1200MW)
- National Grid estimate that ~500MW delivered in 5 mins
- Demand Control not used since 1996 (at least)
- LF Relays not Operated since 1981

Demand Control - GCRP

- Exercise Phoenix Report Presented to Grid Code Review Panel February 2011
- 3% Voltage reduction more likely to provide 3% demand reduction
 - Greater use of power electronics
 - Increasing level of air conditioning
 - Reduction in manufacturing
- Single Voltage Reduction could take up to 13 Mins to implement
 - Due to functionality of current SCADA and voltage control systems
- Failure to implement manual (controlled) action increases likelihood of automatic (uncontrolled) action

Demand Control - GCRP

Exercise Phoenix Report Offered Options for way forward:

- 1) Modify the Grid Code to Reflect Current Status
 - a) Cheap to implement
 - b) Increases risk of automatic action
 - c) Need to instruct earlier
 - d) Risk of 'Unnecessary' Demand Control Instructions

Demand Control - GCRP

- 2) Improve Control Schemes
 - a) Improves implementation speed
 - b) Does not improve efficiency of voltage reduction
 - c) High cost
- 3) Accept that Demand Control will involve Demand Disconnection
 - a) Little cost
 - b) Fast response
 - c) Higher impact on customers

Demand Control 11 February 2012

- Very Cold Saturday Morning
- Temperatures Colder than Forecast (-13° C overnight -10° C daytime)
- Demand Above Forecast Due to Colder Weather
- 3500MW Generation Losses (07:00 to 10:00)
- Stage 1 Demand Control Issued to 5 DNOs (10:06 to 10:15)
- Stage 2 Demand Control Issued to 3 of these DNOs
- Approx 60% of the Demand Control Expected was Delivered
- Time to Implement between 15 and 25 Minutes
- All Reductions Provided by Voltage Control

Demand Control

27 May 2008

- Frequency Below Standard
- Urgent Action Required
- Low Frequency Relay Operation

11 February 2012

- Frequency Maintained
- No Reserve
- Risk from Further Generation Loss/ Demand Uncertainty
- Less Urgent Action Required

Way Forward?

- 1) Modify the Grid Code to Reflect Current Status
- 2) Improve SCADA/ Voltage Control Schemes
- 3) Accept that Demand Control will involve Demand Disconnection
- 4) ??
- 5) ??