

Requirements for Generators (RfG) - Review of banding thresholds

Rob Wilson / Richard Woodward

Agenda

- RfG background on Generator banding
- Introduction to Type A-D requirements
- GB synchronous area banding thresholds
- National Grid proposal on banding
- Analysis of banding proposals
- Interim conclusions from analysis
- Next steps
- Additional Material

RfG – background on Generator banding

- RfG sets harmonised rules on grid connection for power generators in EU, facilitating (amongst other things)...
 - Improved system security
 - Better integration of renewable electricity sources
 - A more efficient use of the network, as well as increased competition (for benefit of consumers)
- The concept of banding was to ensure a proportionate level of generator response, dependent on their capacity and connection
- The requirements in Types A-B tend to reflect a more passive SO engagement, whereas C-D require timely response

RfG – background on Generator banding

- Once the code enters into force, TSOs in each synchronous area can adjust thresholds downwards from their starting point (i.e. to be more onerous)
 - TSOs will be required to take any proposals through public consultation
 - Generators are required to support this by providing data
 - Any proposals are ultimately submitted for NRA approval
 - There is a three year window until another adjustment is permitted
- Once proposed new bandings are ratified, by default they would only apply to new connectees from that point onwards

Introduction to Banding – Type A

- A basic level necessary to ensure capability of generation over operational ranges with limited automated response and minimal system operator control
- Type A ensure that there is no large-scale loss of generation over system operational ranges, minimising critical events, and include requirements necessary for widespread intervention during systemcritical events.

Overview of technical requirements:

- Operation across a range of frequencies
- Limits on active power output over frequency range
- Rate of change of frequency settings applied (likely to be at least 1Hz/sec)
- Low-level communication capability

Introduction to Banding – Type B

- Type B provides for a wider range of automated dynamic response, with greater resilience to more specific operational events
- They ensure an automated response to alleviate and maximise dynamic generation response to system events

Overview of technical requirements

- Type A, plus...
- Ability to automatically reduce power on instruction
- Control schemes, protection and metering
- Fault ride through requirements (prevents faults causing cascade tripping)
- Ability to reconnect
- Reactive capability
- Reactive current injection

Introduction to Banding – Type C

- Provide for a refined, stable and highly controllable (real-time)
 dynamic response, aiming to provide principle ancillary services to
 ensure security of supply
- These requirements cover all operational network states with consequential detailed specification of interactions of requirements, functions, control and information to utilise these capabilities

Overview of technical requirements:

- Type A-B, plus...
- Active power controllability
- Frequency response
- Monitoring
- Automatic disconnection
- Black start

- Stable operation anywhere in operating range
- Pole slipping protection
- Quick resynchronisation capability
- Instrumentation and monitoring requirements
- Ramp rate limits
- Simulation models

Introduction to Banding – Type D

- Requirements specific to higher voltage connected generation with an impact on entire system control and operation
- They ensure stable operation of the interconnected network, allowing the use of ancillary services from generation Europe-wide

Overview of technical requirements

- Type A-C (latter band parameters take precedence when requirements overlap), plus...
- Wider Voltage ranges / longer minimum operating times
- Synchronisation on instruction
- Fault ride through

GB synchronous area banding thresholds

January 2014 RfG draft set GB parameters as follows:

A B		С	D		
0.8KW-0.999MW	1MW-9.999MW	10-29.999MW	30MW+		

NGET understands that the next draft (date TBC) will adjust GB to align with January 2014 CE parameters:

A B		С	D		
0.8KW-0.999MW	1MW-49.999MW	50-74.999MW	75MW+		

NGET has been working on a intermediate proposal position, which whilst unlikely to be incorporated in the RfG, can be adopted via a TSO adjustment procedure. Here is NGET's proposed bandings:

Α	A B		D		
0.8KW-0.999MW	1MW-29.999MW	30-49.999MW	50MW+		

National Grid proposal on banding

- NGET believes it's position represents a reasonable intermediate proposal between draft GB, and the potential draft CE levels (the latter not aligning to Grid Code levels)
- Our work here seeks to inform a GB position on both existing draft levels and any revision, which could be proposed post-entry into force through RfG adjustment process
- The following slides present preliminary analysis on the position of generators under the two banding drafts (GB/CE), and the NGET intermediary proposal. It seeks to identify trends and local specificities which may merit further investigation

Analysis of banding proposals

- The following treatments have been applied to the available data for use in analysing the bandings:
 - 100MW or greater schemes are excluded (inevitably Type D)
 - Data on connection voltages is sporadic, therefore this is not factored into the analysis yet. NB 110KV connections or greater are deemed as Type D (important particularly for Scottish sites given the 132KV transmission threshold)
 - Where DNO data provides aggregate view of projects and MWs, an average has been used to determine the banding
 - Region (i.e. England & Wales/Scotland) not properly captured in some DNO data, so ignored for now
 - Data captures connections from 2015 onwards (so excludes existing assets)

Analysis of banding proposals - TEC/embedded register view

		Type A	Type A	Type B	Type B	Type C	Type C	Type D	Type D
		Projects	MW	Projects	MW	Projects	MW	Projects	MW
15-)	GB (Jan 14)	0.8KW-1MW	0.8KW-1MW	1MW-10MW	1MW-10MW	10-30MW	10-30MW	30MW+	30MW+
(20	Eng & Wal	0	0.000	0	0.000	3	30.000	1	70.000
es	Scotland	0	0.000	58	237.810	49	1,022.720	85	4,955.600
Ĕ									
Schemes	CE (Jan 14)	0.8KW-1MW	0.8KW-1MW	1MW-50MW	1MW-50MW	50-75MW	50-75MW	75MW+	75MW+
လိ	Eng & Wal	0	0.000	3	30.000	1	70.000	0	0.000
ure	Scotland	0	0.000	143	2,666.230	30	1,843.600	19	1,706.300
Future	GB (NGET Proposal)	0.8KW-1MW	0.8KW-1MW	1MW-30MW	1MW-30MW	30-50MW	30-50MW	50MW+	50MW+
	Eng & Wal	0	0.000	3	30.000	0	0.000	1	70.000
	Scotland	0	0.000	107	1,260.530	36	1,405.700	49	3,549.900

Type A out of scope

Green denotes decrease to GB (as-is); **Red** denotes increase Upper level bands rounded up – see slide 9 for full banding levels

- Increase in Type B generators from the existing GB proposal, more so if CE parameters are adopted
- Whilst number of schemes under C fall under both proposals, MWs increase as bigger projects are incorporated in a lower band
- Significant Type D reduction from GB draft (more so CE than NGET proposal)

Analysis of banding proposals - DNO data view

		Type A	Type A	Type B	Type B	Type C	Type C	Type D	Type D
		Projects	MW	Projects	MW	Projects	MW	Projects	MW
15-									
(2015-)		0.8KW-1MW	0.8KW-1MW	1MW-10MW	1MW-10MW	10-30MW	10-30MW	30MW+	30MW+
	GB (Jan 14)	1146932	5869.923	1595	3676.567	88	1352.696	9	450.000
Schemes									
che		0.8KW-1MW	0.8KW-1MW	1MW-50MW	1MW-50MW	50-75MW	50-75MW	75MW+	75MW+
	CE (Jan 14)	1146932	5869.923	1683	5029.263	9	450.000	0	0.000
בו									
Future		0.8KW-1MW	0.8KW-1MW	1MW-30MW	1MW-30MW	30-50MW	30-50MW	50MW+	50MW+
	GB (NGET Proposal)	1146932	5869.923	1683	5029.263	0	0.000	9	450.000

Green denotes decrease to GB (as-is); **Red** denotes increase Upper level bands rounded up – see slide 9 for full banding levels

- 1.15m projects categorised as Type A
- As with TEC view, increase in Type B from the existing GB view
- 9 schemes re-categorised as Type D under NGET proposals (rather than GB as-is). These would be Type C under CE drafting
- As stated before, connection data is not factored here. Arguably a lot of sites connecting to Scottish DNOs could be banded 'D', as well as some current 'medium' scale generators in E&W

Analysis of banding proposals – combined view

		Type A	Type A	Type B	Type B	Type C	Type C	Type D	Type D
		Projects	MW	Projects	MW	Projects	MW	Projects	MW
	GB (Jan 14)	0.8KW-1MW	0.8KW-1MW	1MW-10MW	1MW-10MW	10-30MW	10-30MW	30MW+	30MW+
5-	TEC / Emb Reg	0	0.000	58	237.810	52	1,052.720	86	5,025.600
(201	DNO	1,146,932	5,869.923	1,595	3,676.567	88	1,352.696	9	450.000
	TOTAL	1,146,932	5,869.923	1,653	3,914.377	140	2,405.416	95	5,475.600
je j									
Schemes	CE (Jan 14)	0.8KW-1MW	0.8KW-1MW	1MW-50MW	1MW-50MW	50-75MW	50-75MW	75MW+	75MW+
Sc	TEC / Emb Reg	0	0.000	146	2,696.230	31	1,913.600	19	1,706.300
	DNO	1,146,932	5,869.923	1,683	5,029.263	9	450.000	0	0.000
Future	TOTAL	1,146,932	5,869.923	1,829	7,725.493	40	2,363.600	19	1,706.300
正									
	GB (NGET Proposal)	0.8KW-1MW	0.8KW-1MW	1MW-30MW	1MW-30MW	30-50MW	30-50MW	50MW+	50MW+
	TEC / Emb Reg	0	0.000	110	1,290.530	36	1,405.700	50	3,619.900
	DNO	1,146,932	5,869.923	1,683	5,029.263	0	0.000	9	450.000
	TOTAL	1,146,932	5,869.923	1,793	6,319.793	36	1,405.700	59	4,069.900

Green denotes decrease to GB (as-is); Red denotes increase Upper level bands rounded up – see slide 9 for full banding levels

- 10% increase in Type B schemes GB draft to CE draft; 8.5% increase GB draft to NGET GB proposal (97% and 61% increase in MWs respectively)
- 71% decrease in Type C schemes from GB Jan'14 to CE Jan '14, with only a negligible reduction in MW; 74% decrease to NGET proposal, with 41% decrease in MW
- Significant decrease in number of Type D schemes in CE proposals, with NGET proposal half way in between

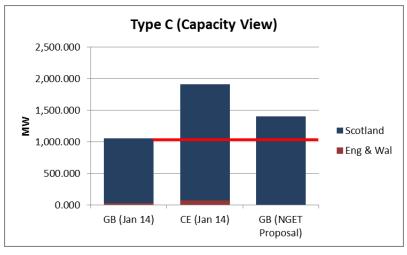
Interim conclusions from analysis

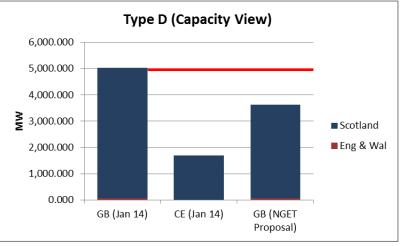
- NGET's intermediary banding represents a reasonable intermediate proposal between the extremes of the January 2014 drafts for GB and CE
- Regardless of this, there are a significant number of Type B generators who will be required to provide Fault-Ride Through, who today would not currently envisage doing so
- Significant range of generator capacity for Type C (especially both CE draft and NGET proposals), who will be required to provide Frequency Response. However these capture bigger capacity schemes than current GB drafting

Next Steps

- Do you agree with the proposed banding level which National Grid has formed? If not, what work needs to take place to refine it?
- Can you help us identify and obtain additional (better?) sources of data not currently incorporated into our banding analysis (particularly for 'Type B and C' scalegenerators)
- Do we need to better understand the cost implications for the System Operator and for Generators implementing the technical requirements set out in RfG before agreeing on banding?
- Any other comments?

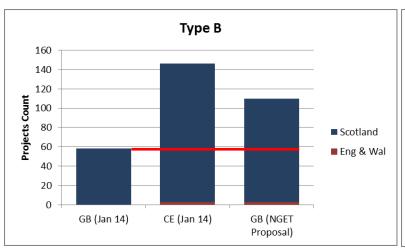
References

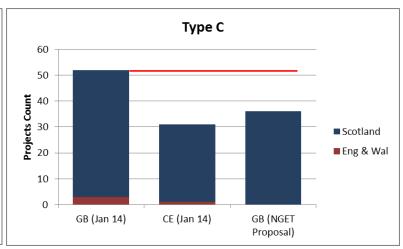

- TEC + Embedded Register 7th Nov 2014:
 - http://www2.nationalgrid.com/UK/Services/Electricityconnections/Industry-products/TEC-Register/
 - http://www2.nationalgrid.com/UK/Services/Electricityconnections/Industry-products/Embedded-Generation-Register/

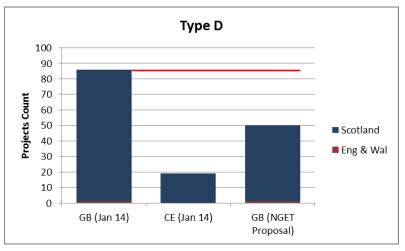

Richard.Woodward@nationalgrid.com

Additional Material

Analysis of banding proposals – TEC/Embedded register - Capacity

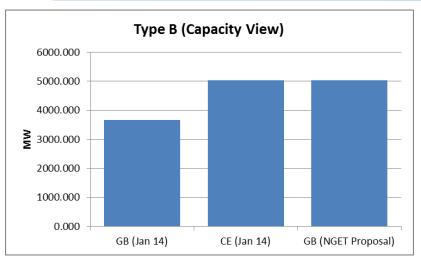


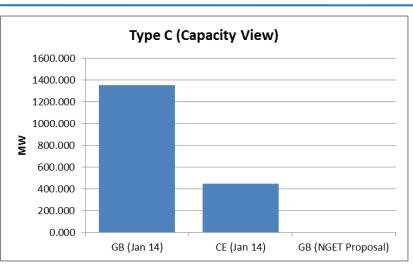


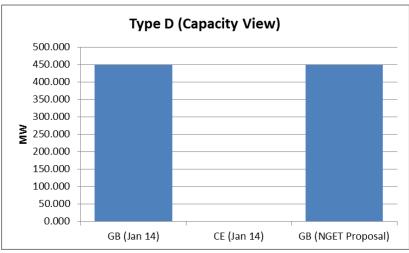


- Significant increase in Type B under CE proposals
- However reduction in both for TypeD

Analysis of banding proposals – TEC/Embedded register - Projects

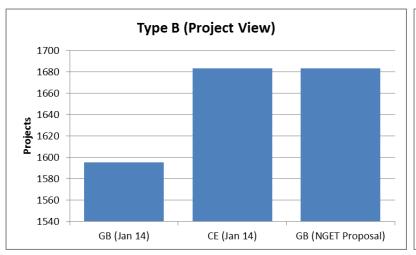


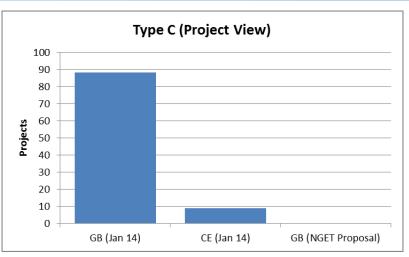


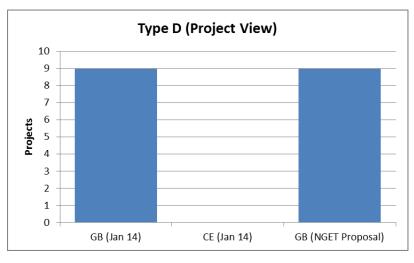


- Number of schemes under CE and GB (NGET) proposal for Type C and D fall
- Increase in B, which has lesser technical requirements
- Need to investigate connections for Scottish schemes. 110KV or above connections = band D

Analysis of banding proposals – DNO data - Capacity

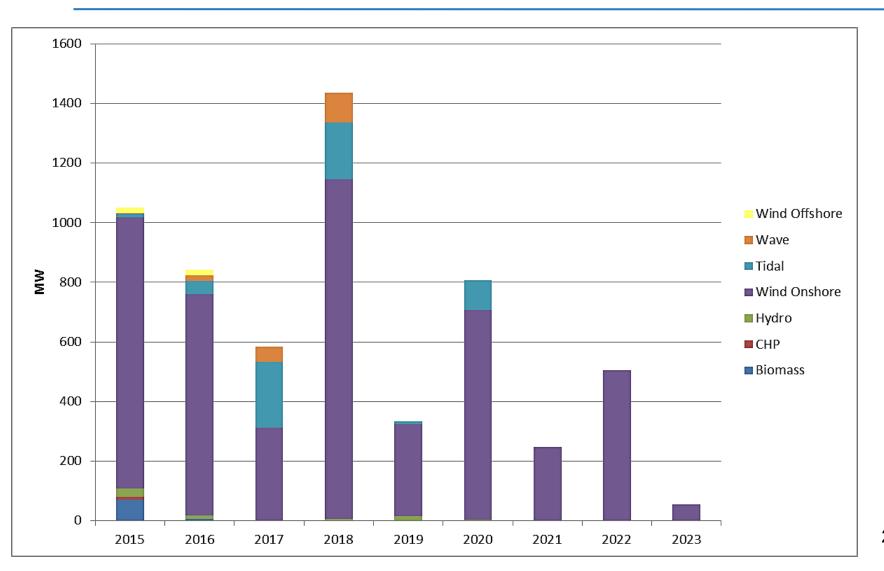


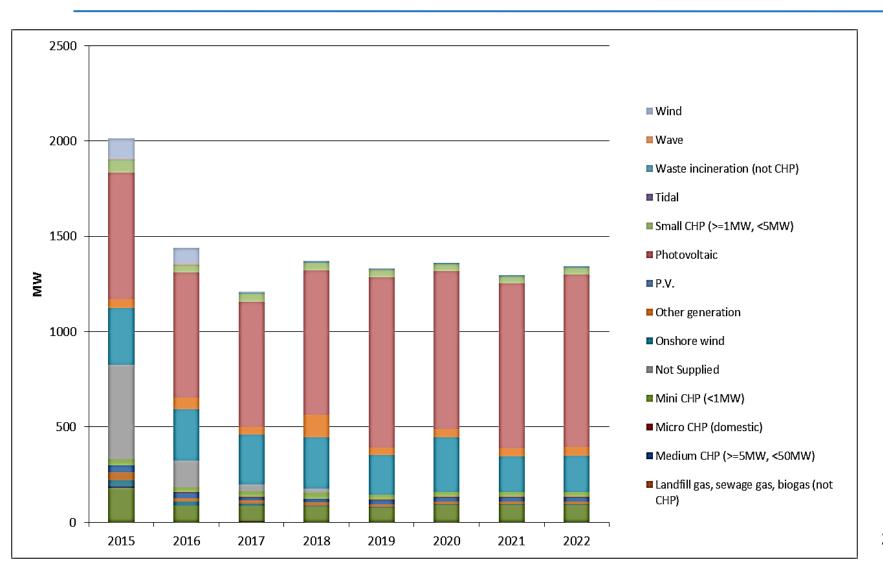




- Increase in Type B as already discussed elsewhere
- Type C for CE becomes Type D for NGET proposal

Analysis of banding proposals – DNO data - Projects





- No difference in Type B MW for CE draft and NGET proposal
- As before, Type C for CE becomes Type D for NGET proposal

TEC/Embedded register view – Project pipeline (technology)

<u>DNO data view –</u> <u>Project pipeline (technology)</u>

